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Chapter 1

Introduction

This thesis is concerned with the limitations of currently available parsing
systems, and how to overcome them. In this chapter, we introduce
parsing, some of the challenges and trade-offs we perceive in the field,
and our approaches to tackle these challenges.

1.1 Parsing
Parsing is the process of analysing an input string in order to extract a
structured representation of its content (a syntax tree) with respect to a
specific language. In the thesis, we focus on parsing formal languages,
such as programming or markup languages — as opposed to natural
spoken languages. Unlike natural languages, formal languages are never
ambiguous: there is only a single correct interpretation of the input.

Parsing is a pervasive activity: every time a source file must be turned
into executable code, a parser is required. Similarly, parsers are used
to convert input files into relevant data structures. It is fair to say that
most programs include a parser — sometimes many.

As such, making parsers easier to write, use, and modify is a broadly
beneficial endeavour. In particular, parsers should be written using a
simple yet expressive notation. It should be easy to modify existing
parsers, as the language definition may evolve. Finally, the parsers should
be able to support diverse practical non-linguistic requirements, such
as the generation of intelligible error messages when the input does not
conform to expectations, permissive parsing in the presence of such errors,
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8 CHAPTER 1. INTRODUCTION

and the ability to derive various artifacts from the parser specification.

Broadly, the practice of parsing can be divided between ad-hoc parsing,
where a programmer writes code to implement a parser for a single
language; and the use of grammarware [49] — parsing tools that derive
from or use a grammar. Grammarware also includes other grammar-based
tools, such as syntax highlighters and pretty-printers.

Parsing is one of the oldest disciplines in computer science, yet even
today, practical challenges and inadequacies remain — whether one uses
ad-hoc parsing or grammarware.

1.2 Inadequacy: Flexibility Versus Simplicity
Ad-hoc parsers have many advantages: they can be fast and can be cus-
tomized to do exactly what the programmer requires. On the other hand,
they are verbose and do not constitute a readable language description.
Nor is it easy to verify that the parser conforms to an existing description
of the language. Additionally, there is very little possibility of reusing
the parsing code to perform other tasks that depend on the structure
of the language, such as pretty-printing; or to parse other languages.1
Composing two ad-hoc parsers might also prove difficult.

Parsing tools, on the other hand, use grammars which help alleviate many
of the issues with ad-hoc parsers. However, they suffer from other issues.
These tools are usually based on Context Free Grammars (CFGs) [14] or
more recently Parsing Expression Grammars (PEGs) [27]. The syntax of
many existing programming and input languages cannot be expressed in
these formalisms because they exhibit context-sensitive features. (Such
as the need to recall some earlier part of the input in order to make
a parsing decision further down the line. Examples will be given in
the next section.) Moreover, parsing tools are fairly rigid and typically
cannot be easily customized.2 Desirable customizations include custom
error-reporting mechanisms and full control over the generated Abstract
Syntax Trees (ASTs). We note that ad-hoc parsing also suffers from all

1This is by definition. As soon as you can reuse parts of your parsing code to fit
different use-cases or languages, you are de facto dealing with a parsing framework,
however incomplete.

2This is broad claim but — in our opinion — not a misrepresentation. We will go into
considerably more details about this when discussing the related work to our various
contributions.
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these issues, in the sense that while it is possible to solve them, it is
relatively arduous to do so.

This suggests a fundamental trade-off in parsing, between the simplicity
and declarativeness of grammarware on the one hand, and the flexibility
of ad-hoc parsing on the other.

The main objective of this thesis is to find the sweet spot to occupy on
this trade-off, and then to develop solutions to fill that space.

In particular, we would like to reconcile programmers with parsing tools,
which they often eschew in favor of ad-hoc parsing for a wide range
of programming languages and input formats. The most frequently
invoked reasons are lack of flexibility (often the inability to handle
context-sensitivity), expressivity (often borne out of ignorance about
more advanced parsing tools), poor error reporting, and performance.3

Three notes on terminology.

In what follows, and in the rest of the thesis, we will often use the term
“grammar” to refer to the specification of a parser. A “grammar” can
mean multiple things, but in the context of parsing it usually refers to
the formal specification of a language. Every parser specifies a language:
the set of input sentences accepted by the parser. As we shall see, our
parsers can include non-declarative elements — arbitrary code. This does
not make a parser any less formal: it still constitutes a description with
precise semantics.

We will also use the term “parser” in two different but related ways.
First, as we already have, to refer to the code that accepts or rejects an
input sentence as part of a language and produces a syntax tree in the
former case. Second, as a sub-unit of this global parser, which can be
composed to create higher-level parsers. This is a staple of the parser
combinator approach, on which we build. Under this paradigm, both

3It is pretty hard to find a reference to support these claims. No one actually polled
programmers about whether they preferred parser generators or ad-hoc parsers. There
is however some evidence in the fact that, among the top 20 open source programming
languages in the TIOBE popularity index, only Ruby makes use of a parsing tool.
Hobbyist languages do not fare much better.
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meanings of “parser” are equivalent: the global parser being simply the
parser at the top of the composition hierarchy.

A parser must generate some kind of tree to capture the structure of the
input. We distinguish between parse trees or concrete syntax trees —
which scrupulously follows the structure of the grammar rules (or parsers)
used during the match, and abstract syntax trees (ASTs) in which tree
nodes need not correspond to any specific grammar rule or parser at all.
We will use “syntax tree” to refer to ASTs or to both kind of syntax trees
in general. We sometimes use “parse tree”, even when no such tree is
actually generated, to denote the way an input is matched by a grammar.
Finally, we shall also use the abbreviation “AST” without expanding it
each time.

1.3 The Best of Both Worlds
We want a flexible yet simple parsing system. A system that, as much
as feasible, exhibits the desirable properties of both ad-hoc parsing and
grammarware, while avoiding their pitfalls.

At this point, it is necessary to enunciate what we think these desirable
properties are, and to justify them briefly. We do not make a list of
pitfalls, as these can largely be seen as dual to the desirable properties:
the unability to achieve a desirable property is a pitfall.

The flexibility of parsing systems should be manifested via the following
capabilities:

• The ability to extend the parsing system with new combinators, i.e.,
new ways of combining existing parsers. For instance, we could add
a combinator that matches the same thing as its longest-matching
sub-parser. Or a combinator that matches a list of items specified by
a sub-parser, and whose separator is specified by another sub-parser.

• The ability to create new primitive parsers that consume part of
the input stream without calling out to other parsers. With this,
we can match objects in an input stream (e.g., tokens) using custom
logic, and not limit ourselves to a single property (e.g., the token
type: identifier, integer literal, ...), as is usually the case. It also
enables reusing parsers defined outside the framework as building
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blocks.

• Full control over the generation of the syntax trees. If you do not
directly get the trees you want, you have to transform those you
get, which is wasteful and cumbersome.

• Allowance for a wide variety of context-sensitive features in the
language’s syntax and generated syntax trees. Many mainstream
programming and markup languages possess context-sensitive fea-
tures that cannot be handled by traditional parsing tools. For
instance, C has namespace-dependent ASTs (some statements have
different meanings depending on whether an identifier designates a
type or a variable); Python and Haskell have significant whitespace;
XML must match the identifier in paired opening and closing tags
(e.g., <foo> and </foo>).

• The ability to customize the error-reporting strategy and the re-
ported error messages.

• The ability to compose independently-developed grammars — at
the very least to embed one language within another. It is common
to embed a domain specific language — such as that of regular
expressions, or SQL — into a general programming language.

• The reification (availability for programmatic inspection) of the
grammar: It should be possible to traverse a description of the
grammar — usually made out of rule definition and sometimes
other combinators. This enables other language-based tools — such
as syntax highlighters and pretty-printers — to be automatically
generated from the grammar.

• Sufficient performance for parsers to be practically usable. While
ad-hoc parsers are more amenable to high performance, parsing
tools are often fast enough in practice. It is still necessary to pay
attention to this aspect while devising new approaches, especially
regarding what could be fundamental limitations on the achievable
performance. We should also embrace the possibility of parser
customization being used to tackle performance bottlenecks.

Conversely, the simplicity of the system should be manifested as follows:

• The grammar (the parser’s specification) should be readable, in
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order to avoid maintaining a separate language description. This
entails the need for parsing system customizations to be expressed
tersely — or for them to be cleanly encapsulated and accessed
through a simple API.

• The system should, as much as possible, be devoid of counter-
intuitive pitfalls. In general, the simple way should be the right
way.

• The system should cover, using a limited number of built-in prim-
itives, most common parsing use-cases. In particular, it should
certainly be as expressive as PEGs and/or CFGs. It is important
for the base framework to be expressive in order to avoid over-
customization and wheel reinvention. At the same time, if the base
system is too big, its subtlest components risk being ignored.

• The system’s principles should be simple and easy to understand
so that it is simple to extend and customize.

• The reification of the grammar (see above) should be easy to
manipulate, so as to ease the development of other language-based
tools.

These lists are by no means exhaustive — there are other desirable parser
properties and even other desirable simplicity or flexibility properties.

Our selection emphasizes properties that are problematic for ad-hoc
parsers or typical grammarware. As such, these are also the properties
that are being traded off when selecting one or the other. While such
a list is, naturally, somewhat subjective, we do believe it to be fairly
non-controversial given the stated objectives.

It may seem that our criteria — which mention composing and creating
custom parsers — are skewed towards parser combinators. While we
do indeed believe that this way lies one of the possible answers, we do
note that even recent state-of-the-art CFG parsers [72, 98] do make the
grammar rule the unit of reuse and extension, and in a sense this was
always the case, even if extension only took the forms of semantic actions.

As we tackle these different capabilities in this thesis, we will be careful to
highlight and discuss the trade-offs introduced by our proposed solutions.
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1.4 The Approach: Principled Procedural
Parsing

In order to accomplish our goal of building a bridge between ad-hoc
parsing and grammarware, we propose a somewhat unorthodox approach
of the notion of parsing.

Instead of considering parsing as merely the derivation of a structured
representation from an input stream based on some description of the
language, we approach parsing as a computation over the input
stream, enriched with free-floating context.

By free-floating context, we mean contextual information that is not
explicitly passed between parser components, but is available to all. This
context should be scoped to the parse, so that multiple inputs may be
parsed in parallel without interfering with each other. As we shall see, we
implement this context as parse-global state made available to parsing
components during the parse. This context is further subdivided into
specific sub-contexts associated to a specific key. We encourage the use
of unique keys to avoid components accidentally interfering with each
other.

Ad-hoc parsers could be seen as an example of the latter approach, where
the free-floating context is simply program state being shared between
components of a parser. However, it is difficult to deal with this state
correctly in the presence of backtracking. Additionally, ad-hoc parsers
suffer from all the pitfalls we outlined before.

Overwhelmingly, grammarware does not allow the use of free-floating
context. When matching grammar rules, parsing tools only consider the
(start of) the remainder of the input. In particular, the history of the
rules that were previously matched — leading to the use of the current
rule — is unavailable. Similarly, one does not usually have access to the
start of the input or any data derived thereof.

If you cannot use contextual information to make parsing decisions, then
this precludes context-sensitivity in your language a priori. That is not
the only use case for contextual data. For instance, an understanding
of how the current rule was reached can be helpful in generating better
parsing error messages. It can also help extend the parsing framework
with new useful parsers.
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Immediately, it becomes apparent that we will need some kind of language
to manipulate this state. We simply chose to embed parser specifications
within an existing general-purpose host programming language, and allow
the use of arbitrary host language code.4 There are few good reasons
not to make that choice. A smaller (external) Domain Specific Language
(DSL) could make it easier to build proofs about the grammar, but there
seems to be little interest in that, both in industry and in academia, and
it remains to be seen what is in fact possible to prove with an extensible
parser description — as opposed to a traditional closed-form formal
grammar. On the other hand, using the host language immediately opens
the possibility of implementing our approaches as a library within an
existing general-purpose language — an attractive practical proposition.
Parser implementations and framework extensions such as custom parsers
and new grammar-derived tools can also be distributed as language
components.

We name our approach — predicated on the manipulation of contextual
information and the ability to inject arbitrary code into the parsing
system — Principled Procedural Parsing.

We call the approach procedural because of the idea that we are going to
issue instructions that manipulate the parsing context. The specification
of a parser is not just a language description: it is the description of a
computation — it guides the execution flow. The term procedural is used
as a tongue-in-cheek counterpoint to declarative — even though we would
still like to keep things as declarative as possible, whenever possible.5 It
is the recognition that to accomplish our stated objective, we deem it
necessary — in fact, desirable — to expose this lower-level computation
layer, instead of abstracting it away.

Furthermore, we say the approach is principled, for two reasons. First,
the goal is still to parse some input stream, and as such our systems will
be structured in a way that is input-centric. The goal of most parser
components is still to match some input. Therefore, we will lay out some
ground rules — principles — that govern how computations should be

4The use of custom code in parsers is sometimes called semantic actions in the
literature. However, we go beyond the traditional purview of semantic actions by
allowing the use of custom code in a way that is less restricted — yet safer — than
usual.

5And in fact, an important part of the work we did, especially with regard to grammar
reification, aims to recapture some of the declarativeness lost by allowing arbitrary
extensions.
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structured. Second, we need to ensure that context manipulations are
safe. As we will see, this is not a given in the presence of backtracking,
which may lead to making some context changes obsolete.

1.5 Autumn: Architecture of a Solution
Our quest for a flexible yet simple parsing lead to the development of
a tool — Autumn. In this section, we briefly outline some fundamental
features of Autumn and how they help implementing the principled
procedural parsing approach.

Autumn implements the principled procedural parsing approach as a
Java 8 parsing library, which is available online at https://github.com/
norswap/autumn. The repository contains links to the user manual (which
include worked out examples) and the full Javadoc documentation for
the Autumn API.

Our solution builds upon Parsing Expression Grammars (PEGs). PEGs
(which are presented in more details in Section 2.4) can be seen as a
formalization of top-down recursive-descent parsers — the usual approach
used in writing an ad-hoc parser — but without the flexibility afforded
by custom code.

Because of this, PEGs can be seen as the specification of a parsing
control flow: the one realized by the corresponding ad-hoc parser. In fact,
this interpretation turns out to be a viable implementation. The only
widespread implementation variant is to memoize the result of matching
a grammar rule at a given input position. This is a trivial transposition
of the idea of memoizing the result of a function given a set of inputs,
and so does not denature the “computational” nature of PEGs.

The missing puzzle piece is a way to reintroduce flexibility into the PEG
formalism. For this, we need two things: first, the ability to run our own
code within the framework of PEG, and second, a way to manipulate
context safely.

The first thing is relatively straightforward. Parsing expression grammars
are made up of small primitive parsing expressions (e.g., character classes),
which may be combined into larger parsing expressions using combinators
(e.g., sequences, choices and repetitions) — which may themselves be

https://github.com/norswap/autumn
https://github.com/norswap/autumn
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further combined.6 What we need to run our own code is simply the
ability to define new primitive parsing expressions and new combinators
— new parsers.

Within these custom parsers, we need to be able to manipulate the
context. The problem here is that when faced with a choice, a PEG
parser may speculatively try an alternative, and needs to backtrack if this
alternative does not succeed. When backtracking happens, all changes
made to the context during the speculative execution need to be reversed.
As it turns out, we are able to do just that. We experimented with
different approaches (more details later), but in the end, associating every
context change with an undo action (a corresponding reverse change)
turns out to be the simplest solution.

We note that the parsing system is still in charge of driving the flow
of the parsing code,7 based on the input and the behaviour defined
by a grammar’s parsers. Granted that the parsers satisfy some simple
contracts, this enables the framework to ensure the required context
safety guarantees.

We dubbed this approach to context-sensitive parsing “Principled Stateful
Parsing” because in this case, the context is held within mutable state,
whose integrity must be preserved in the presence of backtracking.

We improved another aspect of PEG parsing which we thought was sorely
lacking — its ability to parse the syntax of infix (binary) expressions
both efficiently and in a way that produces syntax trees with the correct
associativity. We discuss multiple ways to solve these unexpectedly thorny
issues.

We also dedicated a lot of thought and energy to engineering aspects:
these aspects that are not directly related to parsing algorithms and
their expressiveness, but are nevertheless crucial in building a practically
useful parsing tool. These aspects include performance, error handling,
grammar reification and traversal, debugging and grammar composition.

6Rules are merely named “pointers” to parsing expressions that may be referred to
from within expressions.

7In the sense that it performs inversion of control: during parsing, Autumn is in
charge and occasionally calls user-supplied code, not the other way around. Autumn
is a “library” in the sense that it is a simple dependency that can be added to a Java
program and called by it without needing to install supporting utilities; but it is also
a “framework” because of inversion of control.
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The engineering side of these aspects is seldom discussed, and we consider
our treatment of them to be an important contribution of this work. We
pay particular attention to the usability of the features we introduce, by
trying to make the easy thing right, and the right thing easy.

Our hope is that the approach will first make it easier to perform some
parsing task — especially those with specific or unusual requirements;
and second, enable and inspire the creation of new — hopefully more
palatable — parsing tools. The sort of parsing tool we advocate (and
have built) give back to the user a measure of control over the parsing
process, without incurring the tedium and complexity of an ad hoc parser.

All along this thesis, we will demonstrate how Autumn helps solve
practical parsing problems. We invite readers to download the tool8
and experiment with it.

1.6 Overview & Contributions
We now give an overview of what to expect from the rest of this thesis,
outlining our various contributions and how they relate to each other.

Figure 1.1 contains a (partial) map of concepts and features that will be
presented in the thesis. An arrow between a node A and B means that
B uses A in some capacity — either B is built upon A, or A can be used
in the realization of B. In the explanation that follows, we will refer to
the nodes in this map by marking them in bold.

At the top of our hierarchy, we have an extensible parser combinator
system inspired by the PEG formalism. Parser combinators and PEG
are introduced in Section 2.3 and Section 2.4, respectively. Chapter 2
also presents additional background on parsing in general.

While parser combinator frameworks are relatively widespread, we em-
phasize the extensibility of our approach and its simple underlying model.
The basic principles of Autumn are presented in Chapter 3, and in par-
ticular, we present the underlying model Section 3.2 and its embodiment
in the base Parser class (which is inherited by parser9 implementations)

8https://github.com/norswap/autumn

9Recall that we use the term parser to designate what would be called parsing expression
or parser combinator in other frameworks. See the shaded box on page 9 for more
details.

https://github.com/norswap/autumn
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extensible parser combinator system

built-in parsers per-parse state

Logtransparent 
left-recursion

custom parsers

context-sensitive 
parsingAST control

expression 
family 
parsers

memoization

lexical emulation

recoverable parser

parser invocation 
stack trace

custom error 
reporting

performance 
tracing

parser visitors 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well-formedness 
check

grammar 
transformations

grammar 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Figure 1.1: A (partial) map of concepts and features that will be presented
in the thesis.
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and the Parse class which encapsulates the state of a single parse.

Most features of Autumn are built upon — or extend — this base parser
combinator system. Most obviously, we have the built-in parsers
implementations, and the ability for users to define their own parsers
(custom parsers). We note that all built-in parser implementations
only use features available to the users, but we distinguish built-in and
custom parsers to indicate when users are required to implement such a
parser themselves.

As we made clear in this introductory chapter, the use of free-floating
context, is a key feature of Autumn. The context is held within parse-
specific state objects (per-parse state).

To achieve context-sensitive parsing, the other necessary piece is the
Log data structure, which must be used to apply changes to these per-parse
states. This data structure represents the source of truth for the parse
state, while the actual content of the per-parse state objects is akin to a
materialized view of the log. In that respect, the parse state is similar to
a transactional database: changes are induced by parsers. If a parser fail,
all the change induced by itself and all of its successful sub-parsers must
be undone. The metaphor is imperfect however: transactional databases
typically deal with multiple transactions, which may be concurrent. A
parse is more similar to a hierarchy of nested transactions (one per parser),
with the grammar’s root corresponding to the outermost transaction.

This leads to our principled stateful parsing approach to context-sensi-
tive parsing. Context sensitivity arises from making parsing decisions
from the content of the log (i.e., the context or the state). We formalize
a series of primitive state manipulation operations that can be used to
ensure that state manipulations are safe in the presence of backtracking
— in other terms, to enforce transactional discipline. The approached
is presented in Chapter 5. In particular, Section 5.6 explains how the
formalization relates to the its implementation as the Log data structure.

A particular example of parse state that is emminently useful in practice
is the value stack. This stack is used to build an Abstract Syntax Tree
(AST) corresponding to a parse. Autumn offers built-in parsers that help
construct an AST with ease (AST control). Since constructing an AST
is a fundamental part of a parser’s job, and doesn’t necessarily require
understanding the Log data structure, we present these capabilities in
Section 3.3.
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Beyond the traditional syntax-definition parsers (such as those corre-
sponding to the PEG operators [27]) and the AST parsers, Autumn
bundles other parsers to achieve various other goals. We present some of
these parsers in the following paragraphs.

Parsing infix expression — in particular when mixing left and right
associativity — is a perennial source of difficulties in parsing systems.
Some of these difficulties are presented in Section 2.5. Specifically, with
respect to our chosen approach, the PEG formalism does not support
left-recursive grammar rules, and its semantics make an intuitive def-
inition of associativity arduous. To alleviate these issues, we provide
multiple means to define the syntax of infix expressions, implemented
as built-in parsers. These solutions are presented in Chapter 4. In par-
ticular Section 4.5 introduces transparent left-recursion handling for
Autumn, and Section 4.9 introduces the expression family combinators
which help define mixed-associativity infix expression without explicit
left-recursion while ensuring good parsing performance.

Autumn also enables customizing and improving error reporting (custom
error handling). Its facilities for this purpose are described in Sec-
tion 2.6. Beyond the facilities provided by the base framework, users
can use custom parsers and custom parse states to store additional infor-
mation. Additionally, Autumn includes built-in recoverable parsers
which offers a fallback mechanism in case some part of the input can’t
be parsed in the proper way. All of this is presented in Section 6.4.

Autumn is also able to record parser invocation stack traces, indi-
cating the chain of parser invocations leading to a particular event. By
default, Autumn will associate such stack traces with parse errors, but
users can also make use of them within their custom parsers.

Regarding performance concerns, the memoization and lexical emu-
lation parsers (presented in Section 6.1.4 and Section 6.3, respectively)
help tackle performance issues. Autumn is also able to trace the parse
in order to generate detailed performance metrics, including the number
of invocations of each parser, as well as the total time spent on these
invocations (performance tracing).

As for reification — the requirement that the grammar be programmat-
ically inspectable — we realize it by means of parser visitors, which
realize a somewhat modified version of the visitor pattern [29]. This
is presented in Section 6.5. Most notably, we use parser visitors to
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generalize the PEG well-formedness check [27] to custom parsers, as
well as enable grammar transformations, which in turn can be used
to perform grammar composition. We explore that last use case in
Section 6.7.

This thesis is supported by some of our prior publications. Chapter 4
greatly expands on our paper “Parsing Expression Grammars Made
Practical” [57]. Chapter 5 covers our paper “Taming Context-sensitive
Languages with Principled Stateful Parsing” [58], but provides a different
realization of the same principles. Finally, in Section 6.4.4 we briefly
explain how the ideas in our vision paper “Red Shift: Procedural Shift-
Reduce Parsing” [55] can be applied to an extensible parser combinator
framework like Autumn.





Chapter 2

Background

In this section, we review the background material to which we will refer
in the rest of the thesis. In particular, we will dwell on the most popular
parsing algorithms, including algorithms for Context Free Grammars
(CFGs) and Parsing Expression Grammars (PEGs). We’ll also discuss
ad-hoc parsers, parser combinator frameworks, as well as the way parsers
usually deal with infix expressions and errors.

2.1 Context Free Grammars (CFGs)
While our approach does not build on CFGs directly, they remain the
most widespread vehicle of syntax specification. As such, it is important
to understand them in order to contrast them with our own approaches.
Similarly, previous work on CFG parser implementations is highly relevant
to contextualize our contributions. We will first speak of the formalism
itself, then briefly touch on its parsing algorithms.

2.1.1 The CFG Formalism

CFGs are one of the seminal forms of formal grammars — a way to
define formal languages. They were introduced by Chomsky as part of
his hierarchy of formal grammars. CFGs (Type-2 grammars) are strictly
more expressive than regular expressions (Type-3 grammars) and strictly
less expressive than context-sensitive grammars (Type-1 grammars). [14]

In formal language theory, a language is defined as a (possibly infinite)
set of sentences. A sentence is a string of terminal symbols (terminals).

23
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In the context of parsing, the set of terminals will usually be the set of
admissible input characters or a predefined set of token objects. There
is also a set of nonterminal symbols, which are used in the grammar’s
definition.

Formal grammars describe a set of production rules of the form left

→ right. For CFGs, the left-hand side is always a single nonterminal
symbol (usually denoted by an uppercase word), while the right-hand
side is a sequence of zero or more symbols (terminals or nonterminals
both).

CFGs are sometimes said to be generative, because any sentence in the
described language can be obtained by a sequence of rewrites based on
the production rules.

S → x
S → y
S → z
S → S + S
S → S − S
S → S ∗ S
S → S / S
S → (S)

Figure 2.1

Such a rewrite always starts with a distinguished
nonterminal start symbol (usually noted S).
Our initial candidate sentence is a string con-
taining only S . At each step in the process, we
can take any nonterminal occurring within our
candidate sentence, and replace it with a match-
ing right-hand side from one of the production
rules. If at some point in this process no non-
terminals are left in the candidate sentence, it
is guaranteed to be a sentence of the language.

The set of nonterminals is — by definition — the
set of admissible rule left-hand sides. Formally,
their role is purely mechanical in the process of
generating language sentences, or — conversely
— in establishing whether a sentence belongs to
the language.

However, since grammars are usually written by humans, nonterminals
will tend to correspond to well-known language constructs. As we will
see, many tools exploit this approximation, notably to generate syntax
trees.

Figure 2.1 shows an example of simple CFG for the language of arithmetic
expressions over variables x, y and z.
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2.1.2 CFG Parsing Algorithms

While the generative property of CFGs is elegant, it is not immediately
helpful in the context of parsing, where we first have to recognize whether
a given sentence belongs to a language. Hence, the need for dedicated
parsing algorithms.

Historically, there have been three main types of CFG-based parsing
algorithms: top-down parsers, bottom-up parsers and chart parsers.

In the current context, a parser is the code that performs the task of
parsing, based on a grammar, and running a particular parsing algorithm.
In the discussion that follows, we will often refer to the properties of the
X parsing algorithm as the properties of X parsers.

As stated at the very start of this thesis: “Parsing is the process of
analysing an input string in order to extract a structured representation
of its content with respect to a specific language.” Yet, algorithmically, the
main challenge lies in validating whether the input sentence belongs to the
language. Extracting the structure is more of an implementation concern,
although it does sometimes have algorithm implications — especially
when ambiguity is involved (see below).

We call recognizer an algorithm that only validates whether an input
string conforms to a language defined by a grammar, without extracting
its structure in the form of a parse tree.

Ambiguity occurs when a parser is able to generate multiple different
parse trees for the same input. Said otherwise, when the grammar allows
the same input to be matched in different ways; or formally, when the
sentence can be generated using two sequences of rewrites that are distinct
up to reordering.

Ambiguity is common in natural languages, but is undesirable in formal
languages. As such, grammatical ambiguities have to be eliminated. It
is possible to write a grammar such that it is not ambiguous in the
first place. However, some grammatical idioms are so useful that some
parsers allow the user to write ambiguous grammars, which are then
explicitly disambiguated through disambiguation rules [1]. We note
that the determining whether a CFG is ambiguous is undecidable in
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general [81].1

2.1.3 Top-Down Parsers

Top-down CFG parsers start with a sequence containing only the starting
nonterminal S and recursively replace the first nonterminal in the sequence
by one of its associated right-hand sides, until the sequence becomes
identical to the input.

These parsers are called top-down because they start from the “top” of
the grammar (S) and progressively replace high-level nonterminals by
their constituent parts.

The issue with our simplistic description is choice: a nonterminal may
have multiple associated right-hand sides. Different top-down parsers
will be mostly differentiated by how they deal with choice.

Let’s first consider a naive top-down parser which remembers all the
choices it makes, and stores these choices in a stack data-structure.
During the execution of the parser, the sequence always has a prefix of
zero or more terminals symbols. Replacing a nonterminal by one of its
right-hand sides is guaranteed never to shrink this prefix, since only a
nonterminal is removed. If, at some point, we notice that the terminal
prefix of the sequence diverges from the same-length prefix of the input
text, we can conclude that the parse cannot succeed with the choices
we made. If this occurs, we need to backtrack: restore the state at the
time of the last choice, and try another right-hand side. If all right-hand
sides have been tried and are unsuccessful, we backtrack further to the
previous choice.

Figure 2.2 shows the pseudo-code for a simple recognizer (not a parser,
since a parse tree is not built) using a naive top-down algorithm. It
works as explained previously, but we systematically shed the common
(terminal) prefix of our sequence (symbols) and our input string (input).

The naive algorithm suffers from two big issues. First, it cannot handle
the whole class of CFGs because it fails on left-recursive rules. A left-
recursive rule is a rule whose right-hand side can be expanded to a
sequence that will eventually start with the same nonterminal as the
rule’s left-hand side. The most obvious examples are direct left-recursive

1We will say more on ambiguity — and their relationship with the related problem of
prefix capture — in Section 2.4.3.
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1 function parse(symbols, input)

2
3 if (symbols is empty)

4 if (input is empty)

5 return accept

6 else

7 return reject

8
9 else if (symbols.head is a terminal)

10 if (input is empty || input.head != symbols.head)

11 return reject

12 else

13 return parse(symbols.tail, input.tail);

14
15 else if (symbols.head is a nonterminal)

16 for each alternative (symbols.head -> rhs)

17 if (parse(rhs + symbols.tail, input) == accept)

18 return accept

19 return reject

20
21 parse(list(starting_symbol), input)

Figure 2.2: Pseudo-code for a naive top-down recursive CFG recognizer.
The algorithm parses the input (a list of terminals) against a list of
symbols (initially a list containing only the starting symbol of the CFG).
This algorithm was adapted from a textbook. [60]

S → Xb
S → Xc
X → a
X → aX
X → aXX

Figure 2.3: Simple non-left-recursive CFG that leads to exponential pars-
ing times when using the naive top-down CFG recognizer algorithm. [87]
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rules such as As → As a, where the right-hand side starts with the
left-hand side’s nonterminal. When it encounters a left-recursive rule,
the naive algorithm will loop forever, as it keeps replacing the same
nonterminal again and again.

Second, the naive algorithm has worst-case exponential complexity. It is
rather difficult to characterize the class of grammars that cause exponen-
tial run-times in practice, and the subject is not well-studied.2 Figure 2.3
shows a simple non-left-recursive CFG that leads to exponential parsing
times with the naive algorithm. This grammar matches a sequence of as
followed by a single b or c. The problem in this case is that X is massively
ambiguous: it’s never clear whether the as should all be matched by a
single match for X (second X rule) or split amongst two matches for
X (third X rule). This dilemma occurs at every input position. In the
unfortunate event that the input string ends with c, every combination of
the second and third X rule for every input position has to be considered
before the second S rule is even taken into consideration.

However, the naive algorithm is not as far-fetched as one may think,
as it is almost exactly the one employed by Definite Clause Grammars
(DCGs). DCGs are a mainstay feature of logic programming languages,
most notably Prolog, for which it was developed [17]. DCG rules are
translated into logical clauses which are executed by the logic engine.3 It
is also possible to include regular logic predicates into the rules, making
the algorithm more extensible than any other presented in this section.
Finally, it is possible to thread state through the grammar, a mecha-
nism inspired from attribute grammars [52]. It can be used to generate
ASTs, but can also be exploited to introduce context-sensitivity into the
grammar. We will return to this notion in Section 5.2.2.

While the naive algorithm has worst-case exponential complexity, we
do know classes of grammars which can be parsed with much better
complexity bounds. For top-down parsers, the most famous class is that

2Such exponential grammars do seem to be very rare in practice, although other
inefficiencies may exist. We explore this topic further — but for PEG grammars —
in Section 6.1, the discussion of which may carry over to CFGs to some extent.

3Explaining the intricacies of logic programming and their relationship to parsing is
out of the scope of this thesis; but if you would like to learn more about Prolog and
DCGs, we recommend a short tutorial of our own [54] or the very complete The Art
of Prolog [89].



2.1. CONTEXT FREE GRAMMARS (CFGS) 29

of LL(k)4 [80] grammars. These are grammars for which the parser can
unambiguously select the correct right-hand side to use when expanding
a nonterminal, if given k tokens of lookahead — i.e., looking at k input
tokens after the end of the common prefix between the input and our
current sequence. k is always fixed in advance.

LL parsers have linear time complexity. However, the lookahead re-
striction is bothersome, and manifests itself as first/first or first/follow
conflicts5 within grammars that do not belong to the LL(k) class. Left-
recursive grammars are not in LL(k) [80].

In order to bypass this limitation, alternatives building upon the LL
parser machinery have been proposed.

LL(∗) [71] expands over LL(k) by falling back to backtracking only if
a k-lookahead cannot unambiguously select a right-hand side. LL(*)
has restricted backtracking compared to general CFG parsers, and so
can only handle a subset of all non-left-recursive CFG grammars — but
strictly more than LL(k). LL(*) backtracking is actually much closer to
PEG parsers. The difference in backtracking between CFGs and PEGs
will be explained in Section 2.4.

ALL(∗) (for Adaptative LL(*)) [72] is a further elaboration over LL(*).
Whereas LL(*) performs k-lookahead through a Deterministic Finite
Automaton (DFA) built ahead of time, ALL(*) constructs a DFA dynam-
ically, based on the actual input. Whenever a portion of the input does
not match the DFA, the DFA must be expanded. To find the correct
right-hand side in that case, ALL(*) uses an Augmented recursive Tran-
sition Network (ATN), essentially a Non-deterministic Finite Automaton
(NFA) augmented with a stack that can use the result of other DFAs or
NFAs to make transitions. Parsing using a NFA is normally exponential,
but because every NFA lookup at a given input position ends up cached
in a DFA, the complexity stays polynomial. As a whole, ALL(*) has
O(n4) worst-case complexity, albeit the run-time is almost always linear
in practice.

4LL stands for Left-to-right Leftmost derivation, although this name fails to capture
the essence of what LL grammars are about — it just means that nonterminals are
expanded left-to-right in LL parsers.

5These conflicts occur when two right-hand sides can be reached with the same bounded
lookahead sequence. first/first conflicts occur when those right-hand sides are for the
same nonterminal. first/follow conflicts occur when they are for different nonterminals
that can occur at the same input position.
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Benchmarks show that ANTLR 4, the reference implementation of
ALL(*), is faster than other general CFG parsers. However, it can-
not handle non-direct left-recursive grammars. [72] This shows that the
worst-case complexity is not always the most important factor when
determining the performance of parsing algorithms.

Finally, GLL (for Generalized LL) [82] is a CFG parser that can handle
any CFG in worst case O(n3) complexity. Like LL(*) and ALL(*), it
also builds upon ideas from LL(k), but has a different strategy to deal
with choice and avoid exponential run times. The GLL implementation
is rather complex, but relies on a data structure called Graph-Structured
Stacks (GSS), which is also used to implement bottom-up parsers.

In the naive algorithm, exponential run times occur when the same
nonterminal is expanded into the same right-hand side over and over
(at least in proportion to the input size) at the same position. The way
to avoid this is to memoize the end results of these expansions. By
end result, we mean the expansion into the right-hand side, and then
the subsequent recursive expansions of the nonterminals therein, until
only terminals remain. We only consider expansions that are compatible
with the input string. There might be many such end results because of
grammatical ambiguity.6 By treating the set of these results as a single
entity, one can first avoid recomputing them every time they are needed,
but also construct bigger entities that are made up of smaller ones. The
important property of these entities is how much input they can span,
i.e., the set comprising the size of the input matched by each result. In
ALL(*), the memoization is fulfilled by the DFAs, while in GLL it is the
role of the GSSs.

2.1.4 Bottom-Up Parsers

While top-down parsers work by recursively expanding nonterminals in
the candidate sequence until it matches the input string, bottom-up
parsers work the other way around. They start with the input string —
the targeted sequence expansion — and recursively reduce sequences of
symbols into nonterminals, until only the starting nonterminal S remains.

A naive implementation of the idea is even less efficient than a naive
top-down parser, because at least the naive top-down parser is able to
use the terminal prefix of the sequence to guide the search and back out

6In top-down algorithms, ambiguity occurs whenever multiple different choices in
right-hand side selection lead to recognize the string as part of the language.
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of dead-ends early.

Just like for top-down parsing, this efficiency issue gave rise to the
discovery of sub-classes of CFGs that could be parsed efficiently. Chief
amongst them is LR(k)7 [50]. LR(k) actually defines two classes of
languages, for k = 0 and k ≥ 1. However, both of these classes include
all deterministic context-free languages — which are languages that
can be accepted by a Deterministic Pushdown Automaton (DPDA).8
These languages are also unambiguous. LR parsers have linear time
complexity. There are some variations (SLR, LALR, ...) with slightly
different expressivity and memory usage characteristics, but for this
overview we will stick to the generalities.

LR parsers are implemented as shift-reduce parsers. A shift-reduce parser
is driven by precomputed tables, and uses a stack as its main data
structure. An LR parser scans the input linearly, processing one terminal
at a time. At each step of the parse, the parser looks at the symbols at
the top of the stack, the current terminal, and the k subsequent terminals
(the lookahead). Based on this, the parser consults its tables and takes
the decision to either shift the terminal onto the stack, or to reduce some
items on the top of the stack into a nonterminal — in which case the
symbols on the top of the stack naturally match a rule’s right-hand side.
The parse ends when no more steps can be taken: either no actions match
the current terminal and stack, or the whole input string was processed
and no more reductions can be performed. The parse succeeds if only
the starting symbol S is left on the stack.

The LR language classes are not incredibly intuitive, relating to the
notion of determinism. For instance, palindrome grammars such as
A → a A a | ε 9 are not deterministic. Indeed, the parser needs to
decide where to stop expanding A into the first alternative and into the
second one (the empty string), i.e., it needs to find the middle of the
input. However, a shift-reduce parser cannot possibly determine this

7LR means Left-to-right Rightmost derivation. This refers to an implementation detail
of LR parsers. As an approximation, we could say that, when faced with ambiguity,
LR parsers prefer a right-associative interpretation of the input.

8It’s important to note the difference between a deterministic language and a deter-
ministic grammar. A deterministic language can always be described by one or more
deterministic grammar, but may also be described non-deterministic grammars, that
cannot be automatically translated into a DPDA.

9The pipe refers to choice, so A→ a A a | ε is equivalent to the two rules: A→ aAa
and A→ ε. ε refers to the empty string.
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with a single scan over the input.

We also note that every LL(k) language is also a LR(k) language. In
practice, most programming language grammars are deterministic or
nearly deterministic (cf. shaded box below). For this reason, LR parsing
is the technique of choice for parsing tools of historical significance such as
Yacc and GNU Bison. In these parsers, failure to supply the grammar of
an LR-class language manifests in shift/reduce and reduce/reduce conflicts,
respectively a failure to choose between a shift and reduce action, or
between different reduce actions.

Are programming languages mostly deterministic?

It may seem like a bold claim that the grammars of most program-
ming languages are mostly deterministic, and it is rather hard to show
conclusively. We do however think that the claim is broadly true.

We can make a historical argument, that most grammars where written
for LL or LR parsers, and hence deterministic. However, the causality
could easily be reversed: languages were made deterministic because
that’s all the tools could handle.

A better argument is that we do not know useful programming lan-
guage constructs that require (or are improved by) syntactic non-
determinism.10 For this to be true, we would need multiple programming
constructs that can match an unbounded amount of input, and whose
prefix are ambiguous (but not identical) such that they can only be
distinguished by a bounded suffix. And that’s only the easiest case —
things can be worse, like in our palindrome example.

To clarify, let us a take an example that does not quite satisfy this
criterion: postfix expressions. Consider the following expression which
is valid in Java, C, etc: (a[0][0][0])++ and (a[0][0][0])--. The part
between parens could grow arbitrarily (there is no limit on how deep
arrays can nest). Yet not until the postfix operator (++ and --) do we
know the correct construct. Of course, this case does not quite cut it
because the prefix is identical in both cases: those are expression of lower
precedence than the postfix operators.

Palindrome-like examples do not apply to programming languages: most
bracketed constructs come in pairs (e.g., {} or []). Cases where the left
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and right brackets are the same (e.g., "") typically do not nest, probably
because they would be too confusing for human programmers.

Another pitfall: as we will see later, many languages cannot be expressed
as CFG (or PEG) at all. However, this is usually a problem of context-
sensitivity, and the simplified version of the language described by a
grammar is typically deterministic. This is still a problem, but one that
requires a different cure, which we introduce in Chapter 5.

Later, a generalized LR parser — able to handle all CFGs — was also
devised. It was named GLR (for Generalized LR) [94] and just like
GLL, uses Graph Structured Stacks (GSSs). GLR antecedes GLL and
pioneered the use of GSSs. In brief, the algorithm proceeds like an LR
parser, but whenever a simple LR parser would encounter a conflict, the
GLR parser forks the execution into multiple stacks. Down the line,
the GLR parser is able to merge multiple congruent executions, and so
to share common stack prefix and suffixes amongst multiple executions.
In theory, GLR parsing can have O(n3) [48] complexity, however this
comes with a constant factor so high as to be unusable, so the complexity
of practical implementations is O(np+1), where p is the length of the
longest right-hand side in the grammar [72]. However, the practical run
time is dependent on the degree to which the grammar is deterministic.
Deterministic grammars run in O(n) time.

2.1.5 Chart Parsers

Chart parsers are general parsers capable of handling all CFGs that
rely on a global data structure — the chart — to perform the parse.
The approach centers on the use of dynamic programming to solve sub-
problems, whose answers are stored in the chart. While we treat them
apart from top-down and bottom-up parsers, chart parsers do in fact
strongly exhibit top-down and/or bottom-up properties. In this section,
we will briefly review the Earley and CYK parsing algorithms.

10Professor Peter van Roy pointed out to us that syntactic non-determinism can be
useful in order to handle syntax errors. The ambiguity here comes from the fact
that there are typically multiple ways to interpret an erroneous input. Nevertheless,
that is a parser feature rather than a language construct — so our point stands.
Such “ambiguous” error handling can in fact be implemented with custom parsers
in Autumn.
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The Earley algorithm [24] works by simulating a Non-Deterministic Finite
Automaton (NDFA) that accepts the grammar. It does so by using a
set of linear automata corresponding to grammar rules. In these small
automata, the possible states are before each symbol in the right hand
side sequence, or after the sequence. This is typically represented with a
dot, e.g., [a b • c] is a state for the rule A→ a b c.

For each input position, the algorithm stores a set of these states, along
with the position at which the automata was entered. Initially, the
algorithm starts with a state before each right-hand side of the starting
S symbol, at input position 0. The algorithm then processes the input
one terminal at a time, on the basis of all states at the previous input
position. First, if the next symbol in any state is a nonterminal, a new
state for all right-hand sides of that nonterminal is added at the same
position (prediction). Second, if the next symbol of any state matches
the next terminal, a copy of that state, shifted one symbol forward, is
added to the next position (scan). Finally, if a state is positioned after
all symbols in its sequence, all states at the automaton’s starting position
who have the rule’s nonterminal as next symbol are copied to the next
input position, shifted one symbol forward (completion). The algorithm
avoids duplicating existing states.

The approach looks like a top-down/bottom-up hybrid. Entering new
automata is done in a top-down fashion (via prediction), but automata
skip nonterminals through reductions (completion). The Earley algorithm
can be seen as a breadth-first version of the naive top-down algorithm,
with state deduplication ensuring that the complexity stays polynomial.
Conversely, GLR can be seen as an optimization of Earley, where the
precomputed tables avoid going down dead ends, especially when the
grammar is (mostly) deterministic. Earley’s algorithm complexity is
O(n3), and with a few modifications [62, 45] it can run in O(n) over all
LR(k) grammars. It is unclear whether GLR is faster than optimized
Earley in practice, although that is the commonly held assumption.

The CYK algorithm [16] works on grammars written in Chomsky Normal
Form (CNF) — all CFGs can be converted to CNF. All rules in a CNF
grammar have one of two forms: either A → B C or A → a. The
algorithm considers all substrings of the input, starting first with all
substrings of size one then incrementally increasing the size. Same-length
substrings are processed left-to-right. For each substring, the algorithm
then considers all ways the string can itself be partitioned into two
substrings. Using this process, it progressively fills a global chart that
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remembers which nonterminals matched at which input position, and
how long the match was. The chart is initialized with all matches for
A → a rules, which can be found trivially. Afterwards, each substring
partition is a chance to find a length-specific match for a A→ B C rule.
Given that substrings are handled in increasing order of length, if B and
C match, the information will already be held within the chart.

In summary, CYK is a relatively straightforward bottom-up dynamic pro-
gramming algorithm. It has Θ(n3) complexity, which makes it markedly
worse than other general parsers for many practical (e.g., deterministic)
grammars.

2.2 Top-Down Recursive-Descent Ad-Hoc
Parsers

We want to briefly touch on an often underacknowledged alternative to
using CFGs and assorted parsing tools — and that is, writing a parser by
hand directly. Such a parser is called ad hoc because it is custom-built
for a single language — as opposed to parsing tools that either generate
a parser from a grammar, or parse by interpreting a grammar on the fly.

Most ad-hoc parsers are top-down recursive-descent parsers. Such parsers
are structured as a set of functions — roughly, one for each nonterminal
in the grammar, recognizing that particular nonterminal. These functions
can call each other, potentially recursively.

The semantics of such parsers — and their differences to that of CFGs —
are rather interesting, but we will defer that discussion until we discuss
Parsing Expression Grammars (PEGs) in Section 2.4, which are essentially
a formalization of top-down recursive-descent parsers.

The only other type of ad-hoc parser that we are aware off are those used
to parse infix expressions — which we will discuss in Section 2.5. Both
types of ad-hoc parsers are typically used in tandem.

Why do people write parsers by hand? Arguably it’s more difficult than
writing a grammar (which you will probably need to write anyway —
if only for reference purposes) and feeding it to a tool. And yet, most
mainstream programming languages use ad-hoc parsers (cf. footnote on
page 9)! Here, we recall a few reasons from Section 1.2, which we think
explain the relative preponderance of ad-hoc parsers in serious language
implementation:
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• Ad-hoc parsers are more flexible. In particular, they allow for
context-sensitive features in the language.

• Ad-hoc parsers allow emitting more descriptive error messages.

• Ad-hoc parsers can be faster than parsing tools.

• The implementers may have been ignorant about newer and better
tools, or such tools might not have existed at the time the parser
was first written.

We think that the three first reasons are quite compelling, and these are
in fact some of the problems that we tackle in this thesis.

2.3 Parser Combinators
The parser combinator approach is the natural evolution of top-down
recursive-descent ad-hoc parsing, as covered in the previous section.

In ad-hoc recursive-descent parsing, we typically write a function to
recognize each syntactic element of interest — in the small (e.g., a keyword,
a number) as well as in the large (e.g., a whole function definition).

The idea behind parser combinators stems from the recognition that there
are typical patterns in how we want to combine functions recognizing
smaller syntactic elements in order to produce a function that recognize a
bigger syntactic element. Typical examples of such combinations include
recognizing multiple elements in a sequence, or recognizing one element
amongst multiple possibilities.

As such, a parser combinator is a higher-order function that combines
one or multiple sub-functions in order to produce a new parsing function.

This does entail a standardization of the format of parsing functions. In
order for a parser combinator to be universally applicable, all parsing
functions must satisfy the same interface (i.e., have the same type sig-
nature). For instance, we might define a parsing function as one that
goes from the (remainder of) the input to a binary result (success or
failure) along with a suffix of the input — the function having matched
the missing prefix. There are other ways to represent this: could pass
the whole input and make the current position in the input implicit, for
instance. Some approaches [73, 63] propose using a wider set of results,
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notably to distinguish between errors that should or should not cause
backtracking. We could also include some by-products (typically parse
trees) in the result.

The parser combinator approach represents a step away from the fully
ad-hoc approach and towards a framework — imposing restrictions in
order to foster component reuse. But it is an approach that is still firmly
steeped in the code, as opposed from deriving from a more abstract
formalism.11

The Parsing Expression Grammars (PEG) formalism — which is the
object of the next section — draws on the notion of combinator, but
brings it back into a well-circumscribed grammar formalism similar to
CFG. As explained in Chapter 1, we ourselves endeavour to re-introduce
the flexibility of arbitrary code into this paradigm.

Parser combinators are quite old — the first appearance of the concept
(though not under that name) seems to be in Burge’s 1975 Recursive
Programming Techniques [12]. Burge uses an unimplemented language
based on the lambda calculus, but his approach is surprisingly modern.
He imagines multiple interpretations of his combinators, grounded in
the parsing paradigms popular and (one must add) practical at the time
(LL(1), LR).12 The approach was later used to parse natural languages [28]
and then programming languages [34].

The early history of parser combinators is tightly bound to that of func-
tional programming languages, especially Haskell. This is especially true
as it is shown that parser combinators can be expressed elegantly as mon-
ads [101]. Beyond elegant mathematics, this enables parser combinators
to be able to encode context-sensitive grammatical features — albeit at
a cost. This is explored further in Section 5.2.3.

Despite the academic hype, parser combinators saw at first little practical
use, as noted by Leijen and Meijer [61] in 2001. The former is the author
of Parsec [61] which became the first popular parser combinator library.

11This is blurrier a line than many people seem to realize. After all, programming
languages are formal systems, and the point of standardized interfaces is precisely
abstraction. In this thesis, we are very interested in straddling this line.

12Interestingly, parser combinators frameworks will largely keep the tradition to not
backtrack by default, although it is generally allowed via some special combinator.
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Today, most parsing system presented as parser combinator frameworks
are actually PEG parsing libraries. This is not necessarily a misnomer,
but has the important caveat that the set of available combinators is
usually (though not always) fixed in advance and hence impossible to
extend.

It’s hard to explain why PEG parsing libraries became so popular relative
to the “classical” combinator approach. In principle, any language that
supports higher-order functions and lexical closures (or even approxi-
mations thereof, a class that includes C and Java after version 813) is
susceptible to implement the combinator approach. We could conjecture
that PEG’s similarity to existing formal grammars was partly responsible
for its success. In any case, the explanation does not seem to be technical
in nature. Interestingly, parser combinator libraries based on the CFG
formalism also exist [38, 85], though these haven’t seen significant traction
yet.

We note that the parsers manipulated by combinators can be something
else than functions, although they must necessarily include a functional
component. We already said they could be a monad instance.14 They
could also be instances of an OO-style interface, in which case the combi-
nator is more properly the constructor of the OO-style class implementing
the interface.

Finally we note that Definite Clause Grammars (DCGs), which we
mentioned in Section 2.1.3, are also an example of parser combinator
framework, baked into the Prolog language. In Prolog, DCG clauses are
a syntactic facility that maps the semantics of (non-left-recursive) CFGs
onto that of the language. Because this mapping is transparent to the
user, he may use what the language has to offer, resulting in both an
increase in expressive power15 and expressivity15 when compared to the
CFG formalism.

13Java version 8 introduces proper lambda-abstraction to the language.
14More precisely, using the Haskell terminology, the instance of a type for which an
instance of the Monad typeclass exists.

15Expressive power being about what is possible to express (i.e., the class of languages
that can be represented), while expressivity is about expressing languages effectively
(i.e., ease of use, simplicity of formulation).
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2.4 Parsing Expression Grammars (PEGs)

Parsing Expression Grammars (PEGs) are another variety of formal
grammars introduced by Bryan Ford in 2004 [27], which turns out to be
a rediscovery and improvement of parsing formalisms devised in the 70s,
namely TS/TDPL and gTS/GTDPL [10].

In this chapter, we will introduce PEGs and carefully contrast then with
CFGs. Whereas CFGs are generative — they describe a language and
the grammar can be used to enumerate the set of sentences belonging
to that a language via substitutions — PEGs are recognition-based:
they describe a predicate indicating whether a sentence belongs to the
language. In particular, PEGs define a language by specifying a top-down
recursive-descent parser that recognizes them.

2.4.1 Expressions, Ordered Choice and Lookahead

PEGs differ from CFGs in two important respects. First, PEGs’ produc-
tions (rules) are ordered. A PEG parser will try the right-hand sides for
a nonterminal in order. If a right-hand side is recognized as a prefix of
the remaining input, no other right-hand side (for the same nonterminal)
will ever be tried at the same input position. For instance, assuming the
rules A→ a, A→ aa and S → Ab, a CFG admits the string aab in the
language, but a PEG does not. Since the first production for A succeeds
at the start of the string, the second one is never even tried.

Second, a PEG may contain lookahead operators. The rules’ right-hand
sides may contains the terms &A or !A, respectively meaning that a
prefix of the remainder of the input must or must not match A, but that
this prefix is not to be consumed. For instance, given the rules A→ a,
A→ b and S → &a A !a A, the only admissible string in the language is
ab.

PEG means Parsing Expression Grammar, because the rules’ right-hand
sides are expressions made out of symbols and operators. In reality, this
is only a trivial difference to CFGs, because most rules using operators
can be trivially desugared to equivalent rules that do not include them.
Only the negative lookahead operator (noted !) is required. In fact, Ford
showed that even this operator could be eliminated, but this requires
a whole-grammar transformation [27]. Moreover, most CFG parsing
systems allow specifiying CFGs with expressions in a similar manner.
Table 2.1 lists all parsing expressions available in PEG as originally
defined, along with their precedence. Table 2.2 lists all desugarings for



40 CHAPTER 2. BACKGROUND

these same operators.

Expression Name Precedence

Nonterminal Nonterminal 6

(<e>) Parentheses 6

"string" Literal String 6

[ab] Character Class 6

^[ab] Negated Character Class 6

[a-c] Character Range 6

^[a-c] Negated Character Range 6
_ Wildcard 6

<e>? Optional 5

<e>* Zero or More 5

<e>+ One or More 5

&<e> Lookahead 4

!<e> Forbid 4

<e1> ... <eN> Sequence 2

<e1> | ... | <eN> Ordered Choice 1

Table 2.1: List of the different kinds of parsing expressions along with
their name and precedence.

In terms of expressivity, there are known languages that can be expressed
as a PEG but not as a CFG (such as the language anbncn 16 [27]).
There are also known languages that can be expressed as a CFG but
have no known PEG grammar, though it has not been proved that such
PEG grammars do not exist. The most salient example (in fact, the
only salient) example is that of palindrome languages, e.g., the language

16For the curious reader, the PEG grammar for this language is as follows:
S → (&A !b) a+ B
A→ a A? b
B → b B? c
See Table 2.1 and Table 2.2 for the meaning of the different operators.
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Expression Desugaring

Nonterminal Nonterminal

(<e>) A→ <e>

"string" A→ s t r i n g

[ab]
A→ a ,
A→ b

^[ab] A→ !a !b

[a-c]

A→ a ,
A→ b,
A→ c

^[a-c] A→ !a !b !c

_ A→ disjunction of
all terminals

<e>?
A→ <e> ,
A→ ε

<e>*
A→ <e> A ,
A→ ε

<e>+
A→ <e> A ,
A→ <e>

&<e>

A→ !B ,
B → !C ,
C → <e>

!<e>
A→ !B,
B → <e>

<e1> ... <eN>

A→ E1 ... EN ,
E1→ <e1> ,
... , EN → <eN>

<e1> | ... | <eN>
A→ <e1> ,
... , A→ <eN>

Table 2.2: Desugarings for the parsing expressions in Table 2.1. When the
desugaring is a set of productions, the expression should be replaced with
the name of the first production (denoted by A). Since expression are
recursively nested, expansion is similarly recursive. The fully expanded
form does not contain any operators besides negation (!).
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described the CFG A→ a A a | b A b | ε.17,18 There does not seem to
be practical language idioms that can be expressed with CFGs but not
in PEGs.

2.4.2 PEGs and Recursive-Descent Parsers

1 // S ::= AB c

2 // AB ::= A | B

3
4 function parseS (input, pos)

5 pos = parseAB(input, pos)

6 if (pos < 0)

7 return -1

8 if (input[pos] == ’c’)

9 return pos + 1

10 return -1

11
12 function parseAB(input, pos)

13 pos = parseA()

14 if (pos >= 0)

15 return pos

16 return parseB()

17
18 parseS(input, 0)

Figure 2.4: Naive PEG recognizer pseudo-code implementation for the
grammar fragment contained in the top comment. Each function returns
the new input position after consuming a match, or -1 if it failed to
match.

Because PEGs essentially formalize top-down recursive-descent parsers,
they can be straightforwardly mapped to a function-based implementation,
as shown in figure Figure 2.4. The key is that any parsing expression
can be turned into a single function that calls functions generated for its
nonterminals or sub-expressions.

17As a simple way to see what the problem might be, consider that the suffix of a
palindrome may also be a palindrome. In fact, appending a palindrome to itself
always yields a valid palindrome. Because of the single parse rule, we are unable to
determine the middle of the palindrome in a simple manner.

18Adding context-sensitivity (cf. Chapter 5) solves the issues with palindromes easily:
if we can recall the candidate prefix of the palindrome seen so far, we can ensure
that the single parse rule does not preclude a match by mandating that any “inner
palindrome” be followed by the reverse of the prefix.
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This would not be possible with CFGs: if we assume that both A and B
can match a prefix of the input, then in the case that the check for ’c’ on
line 9 would fail, parseS would need to explicitly try to match B, then
re-try matching ’c’, making the control flow much more complex.

2.4.3 The Single Parse Rule, Greed and (Lack of)
Ambiguity

The consequence of the two differences between PEGs and CFGs are
subtle but crucial. Ordered rules (or, using operators, ordered choice)
lead to what we call the single parse rule: there is at most a single parse
for a given nonterminal at a given input position. The single parse rule
impacts the backtracking pattern of PEG parsers, as we will see in the
next section.

PEG expressions are sometimes said to match greedily: they will alway
match as much input as possible. For instance, the expression a* will
always match as many ’a’s as possible. This means that the expression
a*a can never succeed on any input. This is a direct consequence of the
single parse rule and makes perfect sense if you consider the desugaring
of the Kleene star (*) operator in Table 2.2.

The single parse rule is both an advantage and an inconvenience. It is
an advantage because PEGs are unambiguous19 by construction: given
a valid input, there is only a single correct parse. The disadvantage is
illustrated by our previous example that the PEG with rules A → a,
A→ aa and S → Ab does not accept the string aab. Roman Redziejowski
calls this prefix capture or language hiding [78]. In this simplistic example,
the first rule for A captures the a prefix, and “hides” the second rule for
A.

In a certain sense, ambiguity and prefix capture are two sides of the same
coin, and you cannot have both together. It could be argued that it is
quite easy to let a CFG parser disambiguate on the basis of rule ordering,
thus avoiding both prefix capture and ambiguity by mimicking PEG only
when an actual ambiguity is detected. However, the situation for the end
user remains the same: he still has to search for potential ambiguities
(like for regular CFGs) and to carefully order the grammar rules (like for
PEGs).

19Ambiguity is described at the start of Section 2.1.2.
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S → a B S | z
B → b

S

a
B

b

S

a
B S

zb

Figure 2.5: Given the grammar on the left, the tree on the right represents
the nonterminal expansion of input “ababz”.

Finally, we note that determining whether a PEG has prefix capture,
or whether a CFG is ambiguous are undecidable problems. However,
algorithms exist that can find potential violations [81]. Unfortunately,
besides the issue of false positives, the approach relies on involved whole-
grammar transformations.

2.4.4 The PEG Algorithm

Top-down recursive-descent parsers are sometimes said to have a parse
stack. Roughly, the parse stack consists of all nonterminals on which
the algorithm may eventually try to backtrack by trying an alternative
production. The parse stack only includes nonterminals that have not
been fully expanded yet.20 Because of the single parse rule, these are the
only nonterminals for which we are allowed to try alternative productions.

One can also see nonterminal expansions as trees, where each node is
a symbol. Nonterminals have for children all the symbols that their
expansion generated. This is pictured in Figure 2.5. If we adopt such
a view, then the parse stack of a PEG parser is always a path from a
symbol towards the root of the expansion tree (the starting nonterminal
S). PEG parsers only backtrack vertically in the tree, along this path.
In Figure 2.5, while parsing the second “b”, the PEG parse stack would
be [B,S ,S ].

CFG parsers, on the other hand, must consider the alternative expansions
of nonterminals that have already been fully expanded. The parse stack of

20Given the top-down algorithm, this synonymously means the nonterminals that have
not been fully matched to part of the input yet.
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a naive top-down CFG parser (such as the one listed in Figure 2.2) includes
all nonterminals that have been expanded (fully or not). PEG parsers
backtrack only vertically, but CFG parsers also backtrack laterally. In
Figure 2.5, while parsing the second “b”, the naive CFG parse stack would
be [B,S ,B,S ], where the second B corresponds to the first (leftmost)
expansion of the B rule.

Figure 2.6 shows pseudo-code for a simple PEG recognizer (using the
minimal form with only negative lookahead). This code is very similar to
the naive top-down CFG recognizer shown in Figure 2.2. Because they
are so close, we highlighted the key differences using asterisks (*).

Just like the naive CFG recognizer, the PEG recognizer takes a list
of symbols (initially only the starting symbol S) and the input (a list
of terminals). We also systematically shed the common prefix of our
sequence and our input string. However, the PEG parser returns two
values. In addition to a verdict (accept, reject) that indicates whether
a prefix of the input matched the list of symbols, it also returns the
(unmatched) rest of the input.

The new algorithm adds a clause to the if-statement to deal with the
not-predicate (negative lookahead). But the most significant changes are
on lines 24 and 26: instead of recursing on the rest of the symbols, we
only recurse on the expansion of the first nonterminal. If that succeeds,
only then do we recurse on the rest of the input. This basically enforces
the single parse rule: the nonterminal is matched to an alternative, and
backtracking won’t be able to change it like it could in the CFG parser.

We can now precise the notion of parse stack: it corresponds to the
function call stack in these algorithms. For the CFG recognizer, there
is one function call on the call stack per nonterminal expansion. In
the PEG parser, however, the call stack only contains function calls for
nonterminals that have not been fully expanded yet.21

2.4.5 Packrat Parsing

The simple PEG parsing algorithm presented before has worst-case ex-
ponential complexity. In practice, exponential run times almost never
happen, but other inefficiencies might occur. We discuss the topic further
in Section 6.1, which includes the presentation of a particularly worrying

21In both cases, there are also functions call for matching terminals, but those are of
no interest to us.
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1 function parse (symbols, input)

2
3 if (symbols is empty)

4 if (input is empty)

5 return [accept, input]

6 else

7 return [reject, input]

8
9 else if (symbols.head is a terminal)

10 if (input is empty || input.head != symbols.head)

11 return [reject, input]

12 else

13 return parse(symbols.tail, input.tail)

14
15 * else if (symbols.head is a not-predicate)

16 * [result, _] = parse(symbols.head.operand, input)

17 * if (result == accept)

18 * return [reject, input]

19 * else

20 * return [accept, input]

21
22 else if (symbols.head is a nonterminal)

23 for each alternative (symbols.head -> rhs)

24 * [result, input_leftover] = parse(rhs, input)

25 if (result == accept)

26 * return parse(symbols.tail, input_leftover)

27 return [refuse, input]

28
29 parse(list(starting_symbol), input)

Figure 2.6: Pseudo-code for a PEG top-down recursive recognizer, using
the minimal PEG formalism. Notable differences with the algorithm from
Figure 2.2 have been indicated with asterisks (*).
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inefficiency that we discovered in a common grammatical idiom.

One of the initial draws of PEGs was another algorithm devised to parse
them with O(n) complexity. The algorithm, dubbed packrat parsing [26]
simply consists of memoizing the result of each parsing expression invo-
cation. Indeed, the single parse rule guarantees that there is at most
a single parse for a given parsing expression at a given input position.
Using this technique, each parsing expression can be invoked at most once
at each input position — and since the number of parsing expressions in
a grammar is fixed, the algorithm is linear in the size of the input.

Packrat parsing is not perfect however. Naive packrat parsing may
consume a lot of memory. Storing and retrieving the memoized matches
has a high overhead, which makes packrat parsing less attractive than
its theoretical properties would suggest.

In particular, packrat parsing performs poorly compared with linear-time
CFG parsers and naive PEG parsers, when using a grammar designed
specifically for those parsers. Those grammars are designed to limit
backtracking, and as such benefit very little from memoization [8].

Another pitfall of packrat parsing is that it interacts poorly with parse
state. If the result of a parsing expression depends on something else
than the input position, then it cannot be memoized (alternatively, the
dependency must be identified and become part of the memoized identity).
This also recursively affects all parsing expressions using the offending
expression.

2.5 Expression Parsing
If there is one area that is problematic in programming language parsing,
it is probably parsing expressions made out of operators and values (that
are to serve as operands), especially when infix operators are involved.
The prototypical example is arithmetic expressions on assignable variables,
which feature a mix of binary infix, prefix and postfix operators; as well
as some operator overloading: + and - are both infix and prefix operators,
++ is both prefix and postfix. There are other examples: the syntax of
regular expressions and PEGs, the syntax of types in some languages, ...

Expressions are hard to parse because they are inherently ambiguous.
Should (1 + 2 + 3) parse as ((1 + 2) + 3) or as (1 + (2 + 3))? This
corresponds to the notion of associativity, and the two proposed answers
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are respectively left- and right-associative. Similarly, should (1 * 2 + 3)

parse as ((1 * 2) + 3) or as (1 * (2 + 3))? This corresponds to the
notion of precedence. In the first proposed answer, * has more precedence
than +, while the contrary is true in the second answer.

To get an unambiguous expression syntax, you need a set of values, oper-
ators and their associated precedence and associativity, as well as some
additional restrictions. Typically, operators with the same precedence
should have the same associativity, and be of the same kind (infix, prefix,
postfix), lest some ambiguity remains.

Practical expression syntax has to contend with some additional diffi-
culties. Typically, an escape hatch for precedence is provided under the
form of parens operator (()). There might also be additional syntactic
restrictions on the value that some operators may take as operands.

Another difficulty: Infix operators are not necessarily binary — they
could be ternary, or more. For instance, C-like languages often have a con-
ditional ternary operator of the form [<cond> ? <value1> : <value2>].
Such operators are sometimes called mixfix operators. These can cause
additional ambiguities, but the issue is often avoided by making sure that
the operator parts (e.g., ? and :) preclude “middle-associativity”, leaving
just left- and right-associativity as options and letting the infix opera-
tor be treated as a binary operator. For instance, (a ? b : c ? d : e)

can be interpreted as ((a ? b : c) ? d : e) or (a ? b : (c ? d : e)),
but on the other hand, (a ? (b : c ? d) : e) is syntactically invalid.
Provided there are no further ambiguities with other operators, a suffi-
cient condition to preclude middle-associativity this is to pick distinct
symbols for each part of the mixfix operator.

Putting all this together, we can see why expression parsing is such
a thorny problem. Over the years, a few dedicated algorithms have
been devised. Those are in fact necessary in order to parse expressions
alongside a top-down recursive descent parser.

The first such algorithm is Dijkstra’s shunting yard algorithm [22]. The
algorithm works a bit like a shift-reduce parser, excepted it is driven by
tables of operator precedence and associativity rather than by parse tables
derived from a grammar. Whenever the algorithm finds an operator of
lower-precedence that the previous one, it performs a reduction on this
higher-precedence operator and its operands.
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Another algorithm is Top Down Operator Precedence or TDOP for short,
devised by Vaughan Pratt [75]. Implementations of the algorithm are
sometimes also called Pratt parsers or precedence climbers. Here, the
algorithm is implemented as a function that is responsible to parse one
(sub-)expression and calls itself recursively to parse its sub-expressions.
The trick is to use lookahead to find the next operator and — based
on its precedence or associativity — decide whether to call the function
recursively to parse the expression tree rooted at that operator, or to use
the preceding value as the right-hand side of the previous operator, and
use the resulting tree as the left-hand side of the operator ahead.

It’s interesting to note that the shunting yard algorithm and TDOP are
essentially equivalent: the shunting yard algorithm simply replaces the
recursion from TDOP with an explicit stack.

Of course, expressions can be parsed with regular grammar-driven parsers.
In particular, LR(1), LALR, and all general parsers will accept the
classical expression encoding, which is shown in Figure 2.7a.

The classical encoding encodes precedence by associating each precedence
level with a nonterminal, and referring to these nonterminals from the non-
terminal representing the previous (lower) precedence level. Associativity
is encoded by either direct left- or right-recursion.

LL does not allow the classical encoding, because it is left-recursive.
Neither do classical PEG parsers, but PEG parsers with left-recursion
support will (cf. Chapter 4).

Instead, LL and PEG parsers often adopt an alternate encoding, which
destroys the associativity information. The operators and operands at
the same level of precedence are parsed as a list of terms, and the correct
associativity is reclaimed by post-processing the generated parse tree.
This encoding is shown (for PEG) in Figure 2.7b.

Alternatively, LL and PEG parsers can go hybrid and embed one of
the previously mentioned expression parsing algorithms. To cite Jeffrey
Kegler’s Parsing: a timeline [47]:

But recursive descent does have a huge advantage, one which,
despite its severe limitations, will save it from obsolescence time
and again. Hand-written recursive descent is essentially calling
subroutines. Adding custom modification to recursive descent is
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E → ID ’=’ E | A
A→ A ’+’ P | A ’-’ P | P
P → P ’*’ N | P ’/’ N | N
N → [ 0− 9 ]

ID → [ a − z ]+

(a) The classical encoding.

E → (ID ’=’)*A
A→ P (’+’ P | ’-’ P)*
P → N (’*’ N | ’/’ N )*
N → [ 0− 9 ]

ID → [ a − z ]+

(b) The associativity-free encoding for
PEG.

E → ID ’=’ E
E → E ’+’ E | E ’-’ E @left
E → E ’*’ E | E ’/’ E @left
E → [ 0− 9 ]

ID → [ a − z ]+

(c) The explicit encoding.

Figure 2.7: Three ways to encode an expression language with right-
associative assignments and left-associative arithmetic operators.

very straight-forward.

Some systems [72] allow encoding associativity and precedence explicitly,
or implicitly using rules ordering. In this encoding, a single nonterminal
can be used for all expressions. This is shown in Figure 2.7c: the rules
are listed in order of increasing precedence, and an explicit annotation
indicates that sums and products should be left-associative.

Finally, some programming languages (e.g., Scala, Haskell, Swift and
Prolog) enable their users to define custom operators, sometimes along-
side with their precedence and associativity (e.g., Haskell, Swift). Such a
scheme cannot be encoded in a grammar; but expression parsing algo-
rithms can support it, through dynamic modification of the precedence
and associativity tables that guide the algorithms.

2.6 Error Reporting
This section investigates the literature on error-reporting strategies. The
goal of this investigation was to identify potential strategies that could be
implemented Autumn. Section 6.4 will discuss feasible error-reporting and
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error-recovery strategies for Autumn, which includes both adaptations of
classical techniques presented in this section, as well as novel ideas.

In a parser, an error occurs whenever the input cannot be matched
against the language it is supposed to conform to. Absent a bug in
the grammar, this happens because some things — or potentially, many
things — in the input are wrong, probably as a result of a mistake made
by the programmer. The role of error reporting is then to help the
programmer to spot the mistake and possibly correct it. From now on,
we will use both error and mistake interchangeably.

The notion of mistake is imbued with intent. It is impossible to say with
certainty what constitutes a mistake. In fact, code that parses may still
contain mistakes — which in that case simply resulted in code that was
still syntactically valid. When error-reporting, we are thus always trying
to point out the most likely mistake(s) made by the programmer that
lead to the input being syntactically invalid. Anything we will do will
necessarily be heuristic in nature.

2.6.1 Overview

In order to report an error, the parser must first pinpoint the location
of the error, and then generate an error message that informs the user
about the location and the potential mistake that was made here.

Pinpointing an error is trivial when using deterministic parsers (and
hence, deterministic languages). These parsers run linearly on the input,
and so it suffices to wait until they become stuck and use that location.
In general CFG and PEG parsers, things are subtler, and implementers
often resort to the furthest error heuristic, which we will discuss in
Section 2.6.2.

Generating a good error message is hard. Broadly, existing parsers fall
into two categories: those that report errors in terms of expected or
unexpected terminals at the error site; and those that manually associate
custom error messages with specific error scenarios.22 In the second
case, the context available to generate the error message is often limited,
and this is a major reason why many languages use ad-hoc parsers (cf.
footnote on page 9) — as they make it easier to generate informative
error messages. There is preciously little research on how to generate

22As there are too many possible errors to encode all of them, this approach usually
falls back to reporting (un)expected tokens.
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better error messages, and the techniques are mostly concerned with
associating errors with custom messages. We will review such techniques
in Section 2.6.3.

To the best of our knowledge, there are no approaches that automatically
report errors in terms of higher-level concepts (i.e., nonterminals instead
of terminals). At best, one will be given the content of the parse stack or
trace. This observation was one of the main motivation behind our Red
Shift parsing [55] approach. Red Shift parsing is explained in Section 6.4,
which will also explain how the idea can be adapted in Autumn.

So far, we have only talked about reporting a single error. Realistically,
it’s going to happen that the programmer has made multiple successive
mistakes. It could be interesting to report mistakes past the first one.23

We report on the rich literature on error recovery in Section 2.6.4.

2.6.2 The Furthest Error Heuristic

In a top-down parser, potential mistakes are easy to find. Remember
(Section 2.1.3) that a top-down parser starts from the starting symbol
and progressively expands nonterminals while matching the terminal
prefix of our expanded sequence against the input. Whenever a mismatch
between the terminal prefix and the input occurs, we have a potential
mistake.

Even correct inputs will generate a lot of potential mistakes, because of
choice: it is likely that most right-hand sides for a given nonterminal
expansion do not match the input. Whenever the parse fails, however,
we do need to report something, and there are way too many potential
mistakes to report all of them.

The most popular heuristic is to report the furthest error, i.e., the one
which occurs at the furthest position in the input. In practice, this
heuristic works very well [25], as programming languages tend to be
highly deterministic.

Somewhat surprisingly, the same thing works well for bottom-up parsers
(Section 2.1.4). The reason is that these parsers look at the stack to
determine what right-hand side to use, and so are guided by the previous

23Personally, we are not convinced this is super interesting from a user experience per-
spective, but we are not aware of any user study on the topic, and many mainstream
compilers do report multiple errors.
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reductions living on the stack. In fact, simple LR parsers do not backtrack
and so the first error is always also the furthest error. For general LR
parsers like GLR, it suffices to pick the furthest error amongst the
divergent executions encoded in the Graph Structured Stacks (GSSs).

2.6.3 Associating Errors With Custom Messages

Example-Based Error Messages

Mapping parse errors to error messages can be done through error
productions encoded in a grammar.24

However, Clinton Jeffery [39] notes that adding explicit recovery rules
in an LR grammar makes the grammar less readable and reusable. He
proposes writing examples of syntactic errors, along with a corresponding
error message. These examples are then mapped to (erroneous) LR parse
states; and the parts of the error message that refer to the particulars of
the example are made generic, in order to accommodate similar errors.
For instance, an identifier from the example appearing in the error
message will act as a placeholder for any identifier that might occur
in that context. The parser is modified so that, whenever the parse
state in question is encountered, it can emit an adapted version of the
error message. The approach enables incremental improvements of error
messages by encoding common error cases separately from the grammar
itself. This method was used in the Go language compiler for a while [18],
but it was phased out in favor of ad hoc error handling.

Pottier [74] expands on Jeffery’s approach by proposing an algorithm
that is able to generate a minimal input sentence for every LR error
state, hence making it possible to maintain a complete collection of (error,
message) pairs. The messages still have to be written manually.

Labeled Errors in PEGs

Unlike for CFGs, literature on error reporting in PEGs is relatively scarce.
In general, implementers have been relatively content to stick with the
furthest error heuristic. The only significant alternative proposal was
made by Maidl et al. [63]. They add labeled failures to the PEG formalism:
each parsing expression invocation succeeds consuming some input or
fails with a label. The default failure label is fail which preserves the
default semantics. Other (custom) labels are propagated up the parse

24These may also be used for error recovery, as we will see in a moment.
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stack, but can be caught through a specially-annotated choice expression.
By annotating expressions that should not fail with a special label (for
instance, in many languages an expression must always follow the if

keyword), it becomes possible to more accurately pinpoint errors without
relying on the furthest error heuristic. Moreover the mechanism can be
used to supply custom error messages, in the fashion of error productions.
The system can be seen as a variant of the PEG cut operator as devised
by Mizushima [65], which was inspired by the Prolog cut operator.

2.6.4 Error Recovery

In the presence of a syntactically erroneous input, all parsers will even-
tually become stuck short of their ultimate goal (matching the input to
the grammar), unable to take further processing steps. Most parsers
proceed linearly along the input (possibly going back if necessary, e.g.,
via backtracking). Because of this, they will become stuck at the furthest
error position — typically, once all potential right-hand side expansions
(and combinations thereof) have been tried. At this point, if we hope to
discover further errors in the input, it is necessary to correct — or at
least recover from — the error.

We will distinguish between correcting and non-correcting error-recovery
schemes. Error correction consists of changing the input in order to make
it syntactically valid — or more accurately, to let the parser process
past the current error position. Besides making it possible to report
multiple errors, this is also valuable in its own right — the correction
can be suggested to the programmer. Often — but not always — these
corrections are based on the insertion or deletion of terminals at or around
the error position, as predicted by failed nonterminal expansions. [21]

Non-correcting error recovery is an alternative approach: instead of
correcting the error, we seek to skip past it, and to resynchronize the
parser to the input.

The seminal “dragon book” [3] presents four major families of error-
recovery methods. We present them here briefly. Our presentation is also
informed by the review of error-recovery schemes for LR parsers published
by Degano et al. in 1995 [21]. It offers a comprehensive overview of the
topic up to that date. More recent developments will be discussed later.
LL parsers have been historically less used, and error recovery in those
parsers has been less studied; but broadly, the same principles can be
applied.
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Panic-Mode Recovery

In panic-mode recovery, we skip terminals from the input until we en-
counter one that belongs to a set of synchronizing symbols. Typically
those will be closing parens (e.g., } or )) or other delimiters (e.g., ; or
,). The big question here is which nonterminal to consider as failed,
i.e., where to resume our expansion process. This can either be encoded
manually25 (by using recovery rules, see in a moment), or heuristically.
One heuristic that works well is considering the nonterminal that precedes
the occurrence of the synchronization symbol in a right-hand side as
failed. In LR, this can sometimes be achieved by popping symbols from
the stack [21].

Phrase-Level Recovery

This is a form of error correction performed in two steps. In the first
step, a context (a chunk of the input, a phrase) containing the error is
isolated. In the second step, a correction of the phrase is attempted and
validated.

Isolating the context is done by gathering symbols on the right (in the
remainder of the input) according to a predetermined strategy. It is
also possible to collect context on the left — in LR parsers this would
mean on the stack. The latter is often avoided, as it requires unparsing
nonterminals into their terminal components. Parsing these terminals
might have entailed the execution of semantic actions, which subsequently
need to be undone.

In the second step, a correction is attempted. Typically, these corrections
will be predicated on the parser’s knowledge of previously failed non-
terminal expansions: the phrase is modified so that a previously-failed
nonterminal expansion may now succeed. As multiple corrections may
be possible, the best one must be selected. An effective criterion is to use
the correction that maximizes the input consumed until the next furthest
error position — or, if any, the first correction that lets the parse succeed.

Historically, trying all possible corrections was both complex and costly.
Instead, parsers often limited themselves to local recovery techniques,
which only modify the phrase by adding or removing symbols at the start
of the remainder of the input, typically putting a bound on the number
of such operations — often even to just one substitution, insertion or

25This is notably a possibility in the GNU Bison LALR/GLR parser.
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deletion. These historical algorithms also allow changing the left-context,
but only for terminals that have not been reduced into a nonterminal yet.
The most famous algorithm to perform such corrections is the Burke-
Fisher error repair algorithm [13], which considers only the error symbol
and the terminal part of the left-context, bounded to a fixed number k.

The more general forms of phrase-level recovery are often called region
recovery instead. These occupy the middle spot between local and global
recovery methods (see later). There are a lot of simple but effective
heuristics that can be used to delineate regions of interest, such as
using matching pairs of parens (e.g., () or {}), or even indentation [19].
Note that, somewhat counterintuitively, these methods do not usually
outperform the local approaches, as noted by Degano et al. [21].

Additionally, phrase-level recovery methods (as well as other methods we
will see later) are liable to loop indefinitely in some cases. This must be
detected by effectively bounding the size of the correction, and falling
back on a secondary recovery method (such as panic mode) when the
bound is reached.

While we mostly focus on LR parsers here, the same strategy is straight-
forwardly applicable to LL and other top-down parsers. The major
difference is that if unparsing occurs, it must modify the parse tree under
construction instead of the parse stack.

Error Productions

Sometimes also called error-recovery rules, this strategy consists of an-
notating grammar rules with hints on how to handle an error once it is
encountered. This could consist of instructions for the other error-recovery
strategies, such as which symbol to skip to (panic-mode recovery), or
which symbol to insert (phrase-level recovery); but it could also consist
of more detailed instructions of what to do with the input and the rest
of the parse state.

An example of interest is the Marpa [45] Earley parser (cf. Section 2.1.5),
which enables a technique called ruby slippers.26 The idea is to associate
a semantic action to some grammar rules, which enables the generation
of virtual tokens. This can be used as an error-correction mechanism, by
generating missing tokens; or as a way to enable some context-sensitive

26A reference to The Wizard of Oz where the heroin uses magical ruby slippers to be
transported back to our world.
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features, such as semicolon insertion or layout-sensitive parsing. [46]

Global Correction

The idea of this technique is to find the minimal correction that can
be applied to the whole input in order to make it syntactically correct.
Because this requires a whole reparse of the input in order to validate
each candidate correction, this technique is very expensive and not used
in practice. However, the minimally-corrected input does provide a nice
benchmark against which to compare other forms of error correction.27

Non-Classical Approaches

We now step beyond the classical error-recovery approaches to mention a
few exotic methods and recent developments.

Richter’s Non-Correcting Approach

One of the most promising error-recovery approaches is that developed
by Helmut Richter. In his paper [79], he advocates a non-correcting
recovery approach on a suffix analysis of the input string. In brief, the
suffix analysis of a string is a sequence ix of indices in the string such that
[ij−1 : ij ]28 is not a subword (a substring) of a sentence in the language
and ij marks the first conflicting symbol.

This method has very good empirical results. It particularly shines when
source code has been mangled due to large erroneous cuts or pastes —
cases where error corrections are often impossible.

Unfortunately, the method relies heavily on being able to determine if a
subword of the input is a subword of the language. The naive ways of
doing this are very expensive, but the operation can be made tractable if
we have a recognizer for the corresponding suffix language — the language
containing all the suffixes of the sentences in the original language. This
recognizer must have the correct prefix property, meaning it should be
able to indicate the longest prefix of the input that is a suffix of a sentence
in the language; the reason being that a subword is precisely the prefix of
a sentence’s suffix. It is possible to automatically derive a grammar for
the suffix language from the original grammar, but the resulting grammar
might lose properties of interest, such as determinism. At the time the

27Note however that the minimal correction is not always the best correction.
28ij−1 and ij are both indices in our sequence. ij−1 should not be confused with ij − 1.
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approach was proposed, that made it unpractical, and to the best of our
knowledge, it was never implemented.

Semi-Parsing

Semi-parsing is a set of techniques aimed at parsing only part of an
input — in some case, specifically its correct parts. While the goal is not
strictly speaking error reporting, these methods can be employed — by
reversal — as techniques for error-recovery. Vadim Zaytsev wrote a good
survey of the domain [108]. Some techniques of interest include island
grammars [66] and its derivatives lake and bridge grammars [68].

An island grammar precisely specifies the syntax of only part of the input
(the island) which is surrounded by input specified loosely, or not at
all (the water). In lake grammars, the islands are allowed to contain
pockets of water. In bridge grammars, the relationship between islands
(in particular in terms of scopes) is uncovered using salient indicators
found in the water (reefs).

Automatic Derivation of Recovery Rules

More recently, Visser et al. have worked on integrating various earlier
techniques and making them robust to modern parsing use cases, such as
grammar composition [19]. Their approach automatically derives recovery
rules based on the grammar, using ideas from island grammars [66]. The
indentation of input files is used to improve the quality of error recoveries
inside nested structures.

The automatically generated recovery rules allow skipping unrecognized
“tokens”29, inserting certain literals such as curly braces ({}) and semi-
colons, and closing comments and string literals. These are heuristical
in nature — based on common programming language syntax — and
remind us of some phrase-based recovery approaches. Furthermore, the
generation of these recovery rules are guided by a set of heuristics. For
instance, braces and parens are only inserted in order to balance the
count of opening and closing braces or parens. It is furthermore possible
to customize these rules and heuristics.

29Quoted because Spoofax, the framework implementing the approach is scannerless:
it does not feature a separate tokenization step. Nevertheless, the approximation
holds.
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2.7 Further Related Work
In this chapter, we covered broad background information on parsing tech-
niques and various associated concepts (ambiguity, determinism, greed,
backtracking, ...). We also included a survey of error-reporting and
error-recovery techniques.

This chapter does not constitute an exhaustive related work for the
research exposed in this thesis. Relevant state-of-the-art research will
be cited next to our related contributions in each chapter. In particular,
Section 4.11 presents related work on left-recursion and infix expression
parsing in PEG; while Section 5.2 covers the state of the art in context-
sensitive parsing.





Chapter 3

Autumn’s Basics

Now that we have caught up on the background in the field of parsing,
and in PEG and combinator parsing in particular (cf. Section 2.4 and
Section 2.3), we want to introduce the basics behind the inner workings
of our Autumn parsing tool.1

Autumn is the vehicle we use to demonstrate the various parsing im-
provements presented in this thesis. Moreover, it was also our means to
inquire about the engineering of parsing tools, and now demonstrates how
the various improvements we introduce — but also various techniques
previously presented in the literature — can be built on top of the same
core framework, and can interact with one another.

In particular, Autumn is a parser combinator framework written in Java
that can be seen as an extensible superset of PEG. Autumn’s set of
built-in parsers can be extended by the user2 using arbitrary Java code.
Autumn supports left-recursion (Section 4.5), associativity selection for
infix operators (Section 4.9), context-sensitive parsing through recall
(Chapter 5), memoization (Section 6.1.4), optional seamless lexing (tok-

1Autumn is available online at https://github.com/norswap/autumn
2Let it be said once and for all that when we say “the user” we mean the programmer
who wants to add a parsing component to his program — and is expected to write
a grammar to achieve this. There are a few other interesting actors: a selfsame
programmer that would use a grammar written by someone else, or a programmer
that would use a library with a parsing component and be confronted, for instance,
with parse errors. We’ll refer to these specific use cases where appropriate.
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enization, Section 6.3), and can parse both text strings and lists of objects.
Autumn also has built-in support debugging and tracing (Section 6.6).

All this is achieved with a code base that is both small (less than 5000
significant lines of Java code) and well-documented: over 3000 lines of
comments, which include a full Javadoc reference of the public API. A
full user manual is also available online.

One of the reasons that things are able to fit together so well is that
Autumn evolved constantly over the course of the thesis, undergoing
no less than three full rewrites for a total of four versions. Particular
attention was paid to the user experience of the tool, and some aspects
of the API were constantly improved in that respect. For instance,
the formulation of left- and right-associative operators’ syntax became
markedly less awkward and more consistent over time. In the remainder
of the thesis, we will try to distill some of the lessons gleaned from
Autumn’s evolution.

The current chapter serves to make the reader familiar with Autumn’s
syntax, and to introduce its fundamental principles regarding basic pars-
ing operations, namely recognizing text using simple PEG-style grammars
and generating an abstract syntax tree.

This chapter will not review the principles of parser combinators and
PEG, so it is recommended to have read Section 2.3 and Section 2.4
beforehand.

Many details — especially regarding the parsing improvements presented
in this thesis — will be given in subsequent chapters.

3.1 Introductory Example
As an introduction to Autumn, let us explain a simple but non-trivial
grammar. At first we will only define a recognizer, but then we will
extend it to produce an AST in Section 3.3. In particular, this section will
familiarize yourself with Autumns’s Domain Specific Language (DSL) used
to define grammars, as well as the meaning of some common combinators.

The language for which we will write a grammar is JSON (Javascript
Object Notation), according to the specification available on the official



3.1. INTRODUCTORY EXAMPLE 63

JSON website.3

1 Integer ::= 0 | [1-9] [0-9]*
2 Fractional ::= ’.’ [0-9]+

3 Exponent ::= [eE] [+-]? Integer

4 Number ::= ’-’? Integer Fractional? Exponent?

5 HexDigit ::= [0-9] | [a-f] | [A-F]

6 StringChar ::= !["\] ![\u0000-\u001F] .

7 | \ [\/bfnrt]

8 | "\u" HexDigit HexDigit HexDigit HexDigit

9 String ::= ’"’ StringChar* ’"’

10 Value ::= String

11 | Number

12 | Object

13 | Array

14 | "true"

15 | "false"

16 | "null"

17 Pair ::= String ’:’ Value

18 Object ::= ’{’ (Pair (’,’ Pair)*)? ’}’

19 Array ::= ’[’ (Value (’,’ Value)*)? ’]’

20 Document ::= Value

Figure 3.1: EBNF grammar of the JSON language.

Figure 3.1 displays the JSON grammar using the EBNF notation for
CFGs [37]. In case your are not familiar with the notation, here is a
description of the grammar in English:

• An integer is 0 or a sequence of one or more digits that does not
start with 0.

• The fractional part of a number is a dot followed by a string of
digits.

• The exponent part of a number is ‘e’ or ‘E’ optionally followed by
‘+’ or ‘-’, followed by an integer.

• A number optionally starts with ‘-’, then has an integer, then an
optional fractional part and an optional exponent part.

• - A string character is any Unicode character, but not a double quote

3https://www.json.org

https://www.json.org
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("), a backslash (\), nor anything in the range [\u0000-\u001F]

(which are control characters). Alternatively it can also be a back-
slash followed by another backslash, ‘/’, ‘b’, ‘f’, ‘n’, ‘r’ or ‘t’ (named
character escapes), or the a backslash followed by ‘u’ then four
hexadecimal digits.

• A hexadecimal digit is a letter between ‘0’ and ‘9’ or between ‘a’
and ‘f’, or between ‘A’ and ‘F’.

• A string is zero or more string characters enclosed between double
quotes (").

• A value is a string, a number, an object (see below), an array (see
below), or the words “true”, “false” or “null”.

• A pair is a string followed by a colon, followed by a value.

• An object is a (possibly empty) sequence of pairs, separated by
commas and enclosed between curly brackets ({}).

• An array is a (possibly empty) sequence of values, separated by
commas and enclosed between square brackets ([]).

• A JSON document is comprised of a single JSON value.

However, this EBNF grammar still does not fully specify the language.
We still need to specify where whitespace is allowed. In JSON, whitespace
is allowed after all brackets, commas, colons and values. Whitespace is
comprised of spaces, tabs, newlines (\n) and carriage returns (\r).

The listing below shows the Autumn version of the JSON grammar. The
correspondence with the EBNF grammar is pretty direct, although some
changes are required. The only meaningful grammatical difference is that
the integer rule is simpler, owing to PEG’s ordered choice semantics.
Regarding the notation and other peculiarities, a full commentary follows.

1 import norswap.autumn.Autumn;

2 import norswap.autumn.DSL;

3 import norswap.autumn.ParseOptions;

4 import norswap.autumn.ParseResult;

5
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6 public final class JSON extends DSL

7 {

8 { ws = usual_whitespace; }

9
10 public rule integer = choice(

11 character(’0’),

12 digit.at_least(1));

13
14 public rule fractional =

15 seq(character(’.’), digit.at_least(1));

16
17 public rule exponent =

18 seq(set("eE"), set("+-").opt(), integer);

19
20 public rule number =

21 seq(character(’-’).opt(), integer,

22 fractional.opt(), exponent.opt())

23 .word();

24
25 public rule string_char = choice(

26 seq(

27 set(’"’, ’\\’).not(),

28 range(’\u0000’, ’\u001F’).not(),

29 any),

30 seq(character(’\\’), set("\\/bfnrt")),

31 seq(str("\\u"), hex_digit, hex_digit, hex_digit, hex_digit));

32
33 public rule string =

34 seq(character(’"’), string_char.at_least(0), character(’"’))

35 .word();

36
37 public rule value = lazy(() -> choice(

38 string,

39 number,

40 this.object,

41 this.array,

42 "true",

43 "false",

44 "null"));

45
46 public rule pair =

47 seq(string, ":", value);

48
49 public rule object =

50 seq("{", pair.sep(0, ","), "}");

51
52 public rule array =

53 seq("[", value.sep(0, ","), "]");
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54
55 public rule root = seq(ws, value);

56
57 { make_rule_names(); }

58
59 public ParseResult parse (String input) {

60 return Autumn.parse(root, input, ParseOptions.get());

61 }

62 }

3.1.1 DSL, rule, parsers and combinators

First, notice we inherit from DSL. DSL (for Domain Specific Language) is
a base class that contains a slew of methods which we will use to define
our grammar.

DSL also defines the rule class, which represents a rule in our grammar.

In reality, rule is merely a wrapper around the more fundamental Parser
class. It defines methods that help construct new rules (hence, parsers).
So for instance, in the integer rule, you have digit.at_least(1). digit
is a rule predefined in DSL (as is hex_digit, both by virtue of being
ubiquitous in programming languages), and at_least is a method in the
rule class that returns a new rule. Here, the integer rule matches as
many repetitions of digit as possible, with a minimum of one.

This is a pretty common way to build up objects in object-oriented
programming — it is known as the builder pattern [29].

In practice we will call those things that have type rule or Parser

“parsers”. Parsers can be combined into bigger parsers, such as in
digit.at_least(1). This returns a rule wrapping a parser with type
Repeat (a subclass of Parser). We say that digit is a sub-parser (or
child parser) of digit.at_least(1).

We also say that at_least is a parser combinator (or combinator for
short). A parser combinator takes one or multiple parsers as argument(s)
(in our example, just digit) and combines or wraps them into a higher-
level parser.

In practice, we will reserve the word “rule” for parsers that are assigned
to a field in our grammar — and hence prefixed with the type rule.
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The { make_rule_names(); } bit is an instance initializer that, for each
rule (actually each Parser) that has been assigned to a field, assigns
the rule a printable name corresponding to the name of that field. This
makes for much more pleasant error output.

3.1.2 Whitespace Handling & String Literals

Consider the { ws = usual_whitespace; } initializer at the top of the
grammar. ws is a field of DSL that designates the rule to be used for
parsing whitespace (if it is null — which it is by default — then no special
whitespace handling is performed). Here we assign it the predefined
usual_whitespace rule, which conveniently matches that of JSON.

Where does this whitespace come into play? In all parsers created by
a combinator called word. The word(String) version returns a parser
that matches the specified string and any subsequent whitespace. The
rule#word()4 version matches what the receiver matches, followed by
any whitespace.

You will notice that some of the combinators (e.g., choice in the value

rule) are passed string literals directly. These string literals are implicitly
converted into parsers by applying them the word(String) method.

It is also possible to use the ws rule directly, as we do in the last (root)
rule, because we want to match whitespace before our JSON value as
well.

We note that as a rule, ws must always succeed — it should be able to
succeed while matching no input, which is typically achieved by wrapping
a simple whitespace rule with rule#at_least(0). For instance, usual_-
whitespace is defined as set(" \t\n\r").at_least(0).

3.1.3 lazy and sep

You should be able to tell what most of the methods do by comparison
with our previous descriptions of the grammar (in EBNF and English).
There are a couple of methods that may appear more mysterious, however.

First, there is that lazy method taking a lambda function in the value

rule, and how we qualified object and array with this in that rule.

4The X#y notation denotes that y is a field or method of class X.
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lazy returns a parser that will be initialized when first used, based on
the lambda that it was passed. The reason we need lazy is that there
is recursion in the grammar: an array may contain values, but a value
may itself be an array! Because we use fields to store our rules, a rule’s
definition cannot reference fields that are defined after: when the rule is
initialized, these fields will not have been initialized yet!

And that’s why we use lazy to defer the initialization process. lazy still
produces a rule that can be referred from array, but avoids capturing
the value of array, which is not initialized at that point in time. Even
within a lambda function, Java has a syntactic restriction on forward
reference, and we thus need to prefix array and object with the this

qualifier.

The other method that is slightly different is sep. For instance in the
array rule, value.sep(0, word(",")) means “a sequence of zero or more
values, separated by commas”.

3.1.4 Launching the Parse

The parse method shows how one can initiate a parse over a string
by using the Autumn.parse entry point with a default set of options
(ParseOptions.get()). The method returns a ParseResult, which
amongst other things indicates whether the parse was successful (Parse-
Result#success), and if so, whether it matched the whole input (Parse-
Result#full_match), or otherwise the furthest position to which the
parse could progress before encountering an error (ParseResult#error_-
position).

3.2 Parser and Parse

Let us now look at the general principles of how parsers are implemented.
This revolves around two key classes: Parser and Parse.

We mentioned the Parser class in the previous section. Instances of this
class represent parsing expressions, or parsers, capable of recognizing
some input.

More precisely, a parser is at core a function that, given the remaining
input, succeeds or fails at matching a prefix of this remaining input.

Each kind of parser is a subclass of Parser which overrides its boolean
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Parser#doparse(Parse) method. doparse is a protected method used
to implement boolean Parser#parse(Parse), which is the method that
triggers the parser. The reason for the separation of both methods is
that parse takes care of some bookkeeping automatically.

Together, these methods fulfill the function of parsing, and do so by read-
ing and modifying a Parse object. As the name implies, this represents a
“parse” over an input. A Parse contains, amongst other things, the input,
the current position within the input, the position of the furthest error
encountered so far and a stack used to build an AST (cf. Section 3.3).

In Autumn’s current implementation, parses admit two different types of
input, either a textual String or a list of objects.5

A parser checks if it matches the input by calling sub-parsers, or by direct
comparison against characters or objects via the methods Parse#char_-
at(index) or Parse#object_at(index).

doparse must return true if it matched some input, in which case it
must set Parse#pos past the input that was matched. Otherwise, it must
return false — parse will take care to reset Parse#pos to its initial
value.

On top of doparse, parse adds automatic management of three pieces of
data held in Parse:

• Parse#pos — by capturing its initial value and automatically re-
verting back to it if doparse returns false.

• Parse#error— the position of the furthest parser error encountered.
This is used in error reporting and will be explained later. We also
capture the stack trace for the furthest error.

• Parse#log — the data structure used to manage stateful context.
This will be explained in detail in Chapter 5.

Autumn supplies one Parser implementation per parsing expression in

5It is conceivable to add support for different types of input in the future. Of particular
interest are input streams: inputs that are initially incomplete, such as inputs delivered
over a network connection. The big pitfall here is that since our algorithm backtracks,
we will ultimately need to buffer the whole input anyway — therefore it is unclear
whether the added complexity of supporting input streams is worth it in practice.
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1 import norswap.autumn.Parse;

2 import norswap.autumn.Parser;

3 import java.util.Arrays;

4 import java.util.Collections;

5 import java.util.List;

6
7 public final class Sequence extends Parser

8 {

9 private final Parser[] children;

10
11 public Sequence (Parser... children) {

12 this.children = children;

13 }

14
15 @Override public boolean doparse (Parse parse) {

16 for (Parser child: children)

17 if (!child.parse(parse))

18 return false;

19 return true;

20 }

21
22 @Override public List<Parser> children() {

23 return Collections.unmodifiableList(Arrays.asList(children));

24 }

25
26 // ... (elided)

27 }

Figure 3.2: Elided implementation of the Sequence class representing
parsing expressions formed by the sequential combinator.



3.2. PARSER AND PARSE 71

1 import norswap.autumn.Parse;

2 import norswap.autumn.Parser;

3 import java.util.Arrays;

4 import java.util.Collections;

5 import java.util.List;

6
7 public final class Choice extends Parser

8 {

9 private final Parser[] children;

10
11 public Choice (Parser... children) {

12 this.children = children;

13 }

14
15 @Override public boolean doparse (Parse parse) {

16 for (Parser child: children)

17 if (child.parse(parse))

18 return true;

19 return false;

20 }

21
22 @Override public List<Parser> children() {

23 return Collections.unmodifiableList(Arrays.asList(children));

24 }

25
26 // ... (elided)

27 }

Figure 3.3: Elided implementation of the Choice class representing parsing
expressions formed by the choice combinator.
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Table 2.1, and then some additional ones besides.

As an example, Figure 3.2 and Figure 3.3 show a slightly elided version of
the implementations of the Sequence and Choice classes, which implement
two of the most common parsing combinators: sequencing and choice.

The code also includes an implementation for the Parser#children()

method, which returns a list of the sub-parsers used by the parser. This
method is used to enable traversal of the parser graph (cf. Section 6.5).

Notice how the approach used by our implementation is markedly different
from that of Figure 2.6. That algorithm assumed that each parsing
expression had been fully desugared using the logic of Table 2.2. In
Autumn, by contrast, each type of parsing expression is given its own
implementation. This makes it easier to define custom parsers, and
makes debugging easier, as parser classes will appear in stack traces (cf.
Section 6.6.1).

3.3 Building An Abstract Syntax Tree (AST)
In Section 3.1, we saw an example of Autumn grammar for the JSON
language. However, this grammar simply specified a recognizer: it did
not produce any kind of parse tree.

In this section, we revisit the example and show how to produce an
Abstract Syntax Tree (AST) for the JSON language. The updated code
follows.

1 import norswap.autumn.Autumn;

2 import norswap.autumn.DSL;

3 import norswap.autumn.ParseOptions;

4 import norswap.autumn.ParseResult;

5 import java.util.Arrays;

6 import java.util.stream.Collectors;

7
8 public final class JSON extends DSL

9 {

10 { ws = usual_whitespace; }

11
12 public rule integer = choice(

13 character(’0’),

14 digit.at_least(1));



3.3. BUILDING AN ABSTRACT SYNTAX TREE (AST) 73

15
16 public rule fractional =

17 seq(character(’.’), digit.at_least(1));

18
19 public rule exponent =

20 seq(set("eE"), set("+-").opt(), integer);

21
22 public rule number =

23 seq(character(’-’).opt(), integer,

24 fractional.opt(), exponent.opt())

25 .push(with_string((p,xs,str) -> Double.parseDouble(str)))

26 .word();

27
28 public rule string_char = choice(

29 seq(

30 set(’"’, ’\\’).not(),

31 range(’\u0000’, ’\u001F’).not(),

32 any),

33 seq(character(’\\’), set("\\/bfnrt")),

34 seq(str("\\u"), hex_digit, hex_digit, hex_digit, hex_digit));

35
36 public rule string =

37 seq(character(’"’), string_char.at_least(0), character(’"’))

38 .push(with_string(

39 (p,xs,str) -> str.substring(1, str.length() - 1)))

40 .word();

41
42 public rule value = lazy(() -> choice(

43 string,

44 number,

45 this.object,

46 this.array,

47 word("true") .as_val(true),

48 word("false") .as_val(false),

49 word("null") .as_val(null)));

50
51 public rule pair =

52 seq(string, ":", value)

53 .push(xs -> xs);

54
55 public rule object =

56 seq("{", pair.sep(0, ","), "}")

57 .push(xs -> Arrays.stream((Object[][]) xs)

58 .collect(Collectors.toMap(

59 x -> (String) x[0],

60 x -> x[1])));

61
62 public rule array =
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63 seq("[", value.sep(0, ","), "]")

64 .collect()

65 .as_list(Object.class);

66
67 public rule root = seq(ws, value);

68
69 { make_rule_names(); }

70
71 public ParseResult parse (String input) {

72 return Autumn.parse(root, input, ParseOptions.get());

73 }

74 }

3.3.1 AST-Building Combinators

There are relatively few changes compared to the original version from
page page 64, namely the additions of calls to methods push(...), as_-
val(...) and collect().as_list(...).

The basic principle behind AST creation in Autumn is that there exists
a value stack (accessible via Parse#stack) on which parsers can push or
pop items (often AST nodes).

Typically, a parser will pop the nodes pushed on the stack by its children,
aggregate them into a bigger node, and push that on the stack.

But in fact, it is not the parser itself that will do this, but a new parser
— of class Collect — created (in this example) by the AST-constructing
combinators push(...), as_val(...) and collect().as_list(...). The
Collect parser wraps the parser on which the combinator was called and
takes care of the AST construction functionality.

In our JSON example, a simple case is that of the as_val combinators.
The parsers returned by those, when their sub-parser is successful, simply
push the parameter of the method on the value stack.

The push combinator, in its simple form (without with_string) takes a
function of one parameter. This parameter, which we denote xs (for “the
Xs”), designates an array of items pushed on the stack by the children of
the parser, and popped by the parser. In the pair rule we simply push
this array itself (the array object, not all its individual items) back on
the stack! It will contain as first item a string (the key) and as second
item a JSON value (the value mapped to the key).



3.3. BUILDING AN ABSTRACT SYNTAX TREE (AST) 75

with_string takes a function of three parameters. xs is as discussed
previously, p is an instance of Parse (always unused in this grammar)
and str is the string matched by the parser. Essentially with_string

indicates we want to do something using the matched string — and so
use a 3-parameters lambda instead of the single-parameter lambda that
push normally accepts. Implementation-wise, with_string repackages
the 3-parameters function into the interface expected by push.

In the number rule, we parse the number represented by str and push it
on the stack. In the string rule, we cut off the double quotes and push
the resulting string onto the stack.6

In the object rule, we do something a bit more technical. xs is still the
array of items pushed on stack by sub-parsers, which in this case means
that each item is an array pushed by the pair rule. Therefore we can cast
xs to type Object[][] and stream it. We use Collectors.toMap from
the standard library to isolate the key and the value from each sub-array.

Finally, in the array rule, collect().as_list(...) collects all items
pushed on the stack by sub-parsers into a list whose parameter type is
given by the class parameter (here it is Object), and pushes that list on
the stack.

The collect() part actually creates a builder object than can be used
to build Collect instances with some advanced options. The only AST
combinators defined in class rule are those that cannot be customized (like
as_val(...)) or shorthands for frequently used combinators (currently
only for push(...), which is equivalent to collect().push(...)). This
avoids cluttering rule with options and validation logic that is only
relevant to AST construction.

You can learn more about the various options for Collect in Autumn’s
documentation. We will however discuss one particular customization
option that is often used in practice.

This option is called lookback and enables augmenting the xs parameter
with items from the stack that were not pushed there by children of the

6Beware that this truncated string is not really the represented string. It may still
contain character escapes (e.g., ‘\n’) that have not been processed. We elided the
“unescaping” logic here, but the recommended solution is to isolate it in a helper
method and call this method on the truncated string.
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Collect parser. This is useful for rules that always act as a suffix to other
rules that do push items on the stack. For instance, parser.collect()
.lookback(3).push(xs -> ...) means: collect all items pushed by
parser on the stack, as well as three more items, pop them off the
stack and pass them to push as the xs parameter.

3.3.2 Value Stack as Context

The value stack on which we push AST nodes is a form of state. Whenever
we backtrack over our parsers, we must make sure they do not leave nodes
on the value stack that are no longer part of the current interpretation
of the input.

As it happens, this is exactly the same kind of logic we have to apply to
any kind of stateful context in the presence of backtracking.

Therefore, the value stack will be handled by the same logic as other
cases of stateful context — it is merely one case of particular interest.7

The logic behind the handling of stateful context is explained in detail in
Chapter 5.

3.4 Beyond Basics
Many advanced features of Autumn, built on top of the basic principles
presented in chapter, will be presented later down the line as they become
relevant. This section maps out the locations where these features (in
particular, their Autumn realization) are introduced.

• Section 4.5.2 introduces the left_recursive combinator which
supports transparent left-recursion handling.

• Section 4.8.3 introduces the left_fold and right_fold combinators
that enable folding a push parser over a list of terms.

• Section 4.9 introduces the left_expression and right_expression

combinators, which enable defining families of (infix, prefix, postfix)
expressions grouped by precedence level and is our recommended

7Unlike many other types of context however, we typically do not make parsing decision
(i.e., decisions about the input to match) based on the value stack. However this is
still possible — and legal — in Autumn, but typically not needed and none of the
built-in parsers do so.
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way to define expression syntax.

• Section 5.6 introduces the Log data structure used to manage
context, and how it can be used for context-sensitive parsing in
practice.

• Section 5.6.3 introduces the ParseState class, which is a key way
to make state use (including context) safer by isolating it for each
parse.

• Section 6.1.4 presents Autumn’s support for memoization through
the memo combinator.

• Section 6.3 presents Autumn’s support lexical analysis emulation
via the token and token_choice combinators.

• Section 6.4.5 introduces the Bounded parser, which can be used
restrict the input that a parser can match to that match by another
parser.

• Section 6.5 presents Autumn’s support for grammar traversal
through implementations of ParserWalker, and for defining op-
erations specialized per-parser-kind through implementations of
ParserVisitor.

• Section 6.5.5 explains how visitors and walkers built into Autumn
can be used to check for grammar well-formedness, while Sec-
tion 6.5.6 explains how the CopyVisitor visitor/walker can be
extended to perform grammar transformations.

• Finally, Section 6.6 introduces Autumn’s support for debugging via
reporting of the stack of parser invocation, and for performance
tracing by recording a set of performance metrics.

3.5 Java 8 Grammar
In order to show a more substantial example, we have reproduced our
full Autumn grammar for Java 8 in Appendix A. The grammar does
not use every Autumn feature, but shows what a real grammar defining
non-trivial syntax might look like.





Chapter 4

Infix Expression Parsing in
PEGs and Combinators

As outlined in Chapter 1, the goal of the thesis is the creation of a new
parsing system that strike a delicate balance between simplicity and
expressivity.

The main avenue through which we propose to reach this goal is by
letting the user extend the grammar formalism in well-circumscribed
ways. In particular, we want the user to be able to define new parsers,
which should conform to a standardized interface (cf. Section 2.3 and
Section 3.2).

On the one hand we’re basing ourselves on the semantics of a well-
understood and effective parsing system (PEG). On the other hand we
enable extensibility in a way that feels naturally integrated in the system.
Each parser may have its own semantics, but from the perspective of the
system it acts as a black box.

We think these extension possibilities have been under-exploited, and this
thesis shows that we can use them to build new features. In particular,
we are interested in features that improve the expressivity of the parsing
system, or that solve pain points in the combinator approach.

Since they are typically implemented fairly similarly, both PEG and
combinator parsing frameworks share the same pitfalls. Most of these pit-
falls revolve around defining the syntax of expressions, and the perennial

79
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issues of associativity and precedence. In this chapter, we take the first
step towards transcending the PEG and combinator approaches by seeing
how we can use the strength of the paradigm to solve its own pitfalls.
Hence, this chapter is both a new contribution on infix expression parsing
within the PEG/combinator paradigm, and a validation of the power of
our procedural parsing approach in general.

In what follows, we will refer to “PEG and combinator parsing frame-
works” as just “PEG”. Since the definition of custom parsing expressions /
parsers is at the heart of our approach, let it be is clear that this refers to
PEG-style semantics — i.e., the single parse rule and exclusively vertical
backtracking, as explained in Section 2.4; and not to a myopic vision of
PEG as strictly the set of operators originally described by Ford [27].

In particular, this chapter discusses left-recursion handling in PEG, since
the most notorious problem of these systems is their inability to handle
left-recursive rules. The PEG formalism even explicitly excludes left-
recursion. The reason is simple: in top-down recursive-descent parsers
(which PEG formalizes), left-recursion causes infinite looping, as shown
in Figure 4.1.

1 // S ::= S a | a

2
3 function parseS (input, pos)

4 pos2 = parseS(input, pos) // infinite loop

5 if (pos2 >= 0)

6 pos = pos2

7 if (input[pos] == ’a’)

8 return pos + 1

9 return -1

Figure 4.1: Naive implementation of the left-recursive PEG grammar
shown in the top comment. The function loops infinitely upon invocation.

4.1 Outline
One may question why we even need left-recursion in the first place.
Truthfully, one may usually dispense with it, except in one common case:
defining the syntax of left-associative infix expressions.1 We detail this

1In CFGs, left recursion is also commonly used to encode repetitions. In PEG, this is
easily replaced by uses of the repetition operators * and +.
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case in Section 4.2.

There are multiple ways to tackle the problem of left-recursion. The
approach that may seem simplest at first glance is to define the semantics
of left-recursion in PEG and to handle all left-recursion transparently.2
But for this, the semantics of left-recursion in PEG must first be clarified
(Section 4.3). As we also wish to be able to select the associativity of
expressions that are both left- and right-recursive, we also need to pay
attention to the particularly thorny issue of defining the semantics of
left-associativity (Section 4.4). With this understanding in place, we give
an algorithm that implements the established semantics (Section 4.5)
assuming that the left-recursive expressions have been identified. We fur-
ther explain how to automatically identify these left-recursive occurrences
(Section 4.6). A related approach builds upon our algorithm to specify
both associativity and precedence explicitly, yielding a new combinator
named expression cluster (Section 4.7).

We then depart from the idea of transparency (i.e., having explicit left-
recursive references in the grammar), and show it is still possible to
define syntactic constructs equivalent to the left-recursive ones, while
retaining the ability to generate left-associative trees. To do so, we
propose a parsing combinator that is analogous to a left-folding higher-
order function (Section 4.8). Finally, we show that the left-folding
approach still suffers from a couple minor practical issues — especially
when multiple operators must be defined at the same precedence level,
and propose new combinators that enable defining a family of expression
at the same precedence level (Section 4.9). We conclude the chapter with
a discussion contrasting the different approaches (Section 4.10).

Beyond the various solutions to the problem of left-recursion and left-asso-
ciativity in PEGs, this chapter makes various other contributions. We
precisely circumscribe the issues related to the problem of left-recursion
and left-associativity — in particular under the constraint of maintaining
the procedural character of the system (in which new combinators can
be added seamlessly, and the execution model is simple). We discuss
what it actually means to be left-recursive and left-associative — a
discussion that is too often brushed aside. We propose a pragmatic
understanding of left-associativity in PEG that helps retain its procedural

2We stress that transparently does not mean automatically — it might be necessary to
explicitly annotate left-recursive occurrences. We do discuss automatic handling in
Section 4.6.
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character (Section 4.4). Finally, we validate the power of our procedural
approach by showing it is sufficient to implement multiple solutions to
these particularly thorny issues.

Part of the content of this chapter covers our 2015 paper “Parsing
Expression Grammars Made Practical” [57] (concentrated in Section 4.2,
Section 4.6 and Section 4.7), while the rest is original.

4.2 Grammatical Encodings of Expression
Syntax

The most common and important use of left-recursion by far is in the
definition of infix expression syntax. The way such syntax is often
conveyed to humans is through the use of the precedence and associativity
of operators. Precedence defines how tightly an operator “binds” its
operands compared to other operators, while associativity defines if
operators with the same precedence group to the left or to the right. See
Section 2.5 for more details, examples, and a discussion of corner cases.

CFG and PEG, however, do not include the notion of precedence and
associativity. Some tools do expose the notion, typically either to desugar
it to the regular grammar notation, or to guide a lower-level process. For
instance, the YACC (LALR) parser generator [43] uses associativity and
precedence annotations to resolve shift-reduce conflicts.

Figure 4.2 shows five PEGs that define an arithmetic language with
multiplication, division, addition and subtraction. Grammars 4.2a and
4.2b are the only two supported by the original PEG formalism. Gram-
mar 4.2c requires left-recursive semantics. Grammar 4.2d uses special
annotations to indicate precedence and associativity, changing the se-
mantics of the grammar accordingly (we present one realization of this
idea — expression clusters — in Section 4.7). Grammar 4.2e only uses
associativity annotations, relying on the traditional layering approach to
specify precedence. We could call these five grammars different encodings
of the expression syntax.

While all grammars in Figure 4.2 describe the same language, they do not
generate the same syntax tree. They all encode the correct precedence,
but while grammars 4.2c, 4.2d and 4.2e are left-associative, grammar
4.2a is right-associative, and grammar 4.2b is neither (an expression’s
parse tree is composed of its leftmost operand followed by an optional
list of suffixes).
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S → P ‘+’ S | P ‘−’ S | P
P → N ‘∗’ P | N ‘/’ P | N
N → [0− 9]+

(a) Layered, Right-Associative

S → P( ‘+’ S)∗ | P( ‘−’ S)∗ | S
P → N ( ‘∗’ P)∗ | N ( ‘/’ P)∗ | S
N → [0− 9]+

(b) Idiomatic

S → S ‘+’ P | S ‘−’ P | P
P → P ‘∗’ N | P ‘/’ N | N
N → [0− 9]+

(c) Layered, Left-Associative

E →
E ‘+’ E @+ @left,

E ‘−’ E ,
E ‘∗’ E @+ @left,

E ‘/’ E ,
[0-9]+ @+

(d) Annotations

S → S ‘+’ S | S ‘−’ S | P @left

P → P ‘∗’ P | P ‘/’ P | N @left

N → [0− 9]+

(e) Layered + Associativity Annotations

Figure 4.2: Five PEGs defining a minimal arithmetic language.
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Worryingly, arithmetic is traditionally defined as left-associative, but only
the layered right-associative (4.2a) and idiomatic (4.2b) grammars can
be written in standard PEG. This is the single best argument that PEG
needs a way to handle left-recursion or at least to define left-associative
syntax.

Needless to say, infix operators are a big deal in programming languages.
Besides being overwhelmingly used to define the syntax of arithmetic
expressions, they are also commonly used within the syntax of types
(e.g., type unions, disjunction, type parameters, type bounds) and in
specialized languages (e.g., regular expressions, PEG — cf. Table 2.1).
Many general programming languages (e.g., C++, Scala, Haskell) also
offer the possibility to define custom infix operators, which are often used
in the definition of domain specific languages (DSLs).

4.3 The Semantics of Left-Recursion

In order to realize transparent3 left-recursion, we have to extend the PEG
formalism with a semantics for it, then to find a means to implement it.
Some of the simplicity of PEG is lost in the process, but — crucially —
the simple parser interface described in Section 2.3 can be preserved.

The semantics of left-recursion are awkward to describe, because they
break the single-parse rule: left-recursive rules can have multiple (nested)
matches at the same input position. The function-call metaphor also
breaks down as the naive implementation begets infinite recursion, as
previously shown in Figure 4.1.

It is perhaps easiest to describe the desired behaviour using a crude oper-
ational semantics — by describing the left-recursion matching algorithm.
The original algorithm was devised by Warth et. al for their OMeta
parsing framework [105] as a modification of the packrat memoization
mechanism (cf. Section 2.4.5), but the basic idea behind the solution
remained similar in further improvements of the algorithm.

It goes as follows: when we first try to match a left-recursive parser,
we block all left-recursive invocations of that parser. The result is a
first match called the seed. The next step is to iteratively grow the seed.

3By transparent handling of left-recursion we mean a way to handle left-recursion that
does not entail a fundamental reorganization or rewrite of the grammar. At most,
left-recursive rules should be marked explicitly.
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This is done by resetting the input position and attempting to match
the parser again — except this time left-recursive invocations match the
same input prefix as the previous seed. This process is repeated until the
seed stops growing, at which point it becomes the final match for the
parser.

For instance, consider the grammar A → Aa | b with the input “baa”.
Here is what happens over the run of the algorithm:4

1. The first alternative is tried. Left-recursion is blocked, so it fails.
The second alternative succeeds. The new seed is “b”.

2. The first alternative is tried. Left-recursion matches the seed (the
result of the previous iteration — “b”). The new seed is “ba”.

3. The first alternative is tried. Left-recursion matches the seed (“ba”).
The new seed is “baa”.

4. The first alternative is tried. Left-recursion matches the seed
(“baa”). However, no further “a” can be matched. The second
alternative fails as well. We cannot grow the seed, so the previous
seed (“baa”) is the final match.

So far, so good, but things get more complicated if we introduce syntax
trees. In the discussion to follow, we will consider concrete syntax trees:
where each parser creates a node in the syntax tree. However, the
discussion is equally valid for more abstract syntax trees.

Given syntax trees then, one issue remains. What to do for rules that
are both left- and right-recursive5, such as S → S + S | x. If we use
parens to delimitate the syntax tree, the input string x + x + x could be
parsed as ((x + x) + x) or as (x + (x + x)). The first interpretation is said
to be left-associative, the second right-associative. Which one should be
selected?

The algorithm presented above will always favor a right-associative parse:
after obtaining the initial seed, the right-recursion consumes the rest of

4If you are interested in a pseudo-code formulation of the algorithm, refer to Fig-
ure 4.3, which displays an algorithm that subsumes this simple left-recursion matching
algorithm, adding support for associativity selection.

5We shall sometimes designate these occurrences as dual-recursive.
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the matchable input, and the seed is not allowed to grow any further.

The question lead to some debate. Laurence Tratt [96] argues that only
the left-associative option makes sense, keeping in with PEG’s greedy
nature. However, OMeta [105], which uses the algorithm above, always
selects the right-associative interpretation.

Our own opinion is that this is just a matter of convention, and it is
desirable to be able to choose the desired associativity. This, in turn,
means we need to define specific semantics for the left-associative case
(as the above algorithm naturally behaves right-associatively).

But we will also admit that we do not know any case that requires
dual left- and right-recursion. It seems one can always get the desired
associativity via layering (cf. Figure 4.2). Yet, there is still value in
permitting associativity selection for dual recursion. Dual recursion might
occur unforeseen, when performing grammar composition or grammar
refactorings. Given that, it might help to preemptively clarify the desired
semantics (left- or right-associative). This also helps when converting
legacy grammars to Autumn (potentially with the assistance of tools):
dual recursion elimination becomes one less difficulty to care about.

There is only one issue. Defining the semantics of left-associativity is, it
turns outs, much more difficult than one would expect.

4.4 The Semantics of Left-Associativity
The platonic ideal of associativity is that it is a tie-breaker when there
is an ambiguity in the way to match a given input: associativity defines
whether we recurse on the right or on the left.

A few remarks. First, associativity does not cover all possible inter-
pretations of an ambiguous input. Consider the CFG (not PEG!):
S → S+S | x with input x+x+x+x . There are 5 possible interpretations:
(x + (x + (x + x))) (right-associative), (((x + x) + x) + x) (left-associative),
((x + x) + (x + x)), (x + ((x + x) + x)), and (x + (x + (x + x)) + x). The
last three interpretations can not be designated via associativity. But
who in their right-mind would want such a behaviour?

Second, PEG is naturally unambiguous. This is why we need a separate
left-associative semantics in the first place. It also means the tie-breaking
interpretation is not very tractable. We need to proactively (before the
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parse) find out where such “ambiguities” might occur.

4.4.1 Naive Formulation

There is one formulation of left-associative semantics that is very simple
and works well on infix rules like S → S + S | x. The formulation is “a
left-associative rule may not recurse within a right-recursion”.
For instance, within the aforementioned rule, the second S on the right-
hand side can only ever match x.

This formulation has two problems, however.

First, it turns out that it is impossible to tell right-recursion apart from
other forms of non-left recursion (also known as middle recursion). For
instance, in S → S(S)S | x, the middle S should be allowed to recurse
freely.

Second, it means we also forbid legitimate right-recursion. For instance,
in A→ AA | bA | a, the bA alternative is sometimes unambiguous and
should be allowed to right-recurse — but as formulated, it can only ever
match ba but not, for instance, bba.

4.4.2 Ambiguous Recursion

It turns out that our two problems from the previous sub-section share
the same root cause.

Namely, both left- and right-recursion can be hidden: only occur on
certain inputs. For instance, S → a? S c | b has hidden left-recursion:
it is left-recursive on input bbc, but not on inputs abc or aabcc. Hidden
recursion also occurs through ordered choice: S → aSc | bS | b is not
right-recursive on input abc but is on input bb.6

The consequence is that we cannot in general tell whether a recursive
occurrence is an instance of left- or right-recursion.

Of course, some rules are always unambiguous, for instance in S →
S (S) S | x, the middle S is never a left- or right-recursion.

6Left- and right-recursion can also be indirect, i.e., reached through a chain of rules
(parsers) rather than appearing immediately on the right-hand side. This complicates
analysis slightly, but is not a limiting factor.
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We could define the semantics of left-associativity by specifying the desired
behaviour for the cases where recursive occurrences are unambiguous
(i.e., provably (non-)left- or (non-)right-recursive). We think this is a
user experience mistake, however. Indeed, instead of having a simple rule
that is always applicable, we now have to split the semantics in three
parts: the semantics given ambiguous recursion, the semantics given
unambiguous recursion, and the rules that statically determine whether
a recursive occurrence is ambiguous or not. This turns an already tricky
notion into something truly complex.

An alternative could be to check for ambiguity at run-time. This is
relatively simple for left-recursion, but arduous for right-recursion —
requiring some form of implicit lookahead parsing. We discarded this
possibility out of hand, because it reintroduces a limited form of lateral
backtracking to the PEG-like formalism (cf. Section 2.4.4). This signifi-
cantly complexifies the semantics and opens up a lot of possibilities to
run into patterns of poor performance due to the additional backtracking.

4.4.3 Restating the Problem

At this point, we hope to have established that the problem does not
have any obvious elegant solution — the left-associative interpretation of
a PEG rule that is both left- and right-recursive is intractable in general.

This seems like a strong claim, so let us re-contextualize and recapitulate
the issue.

We take as a given that we want to work with an execution-based (oper-
ational) PEG semantics, without lateral backtracking. These semantics
seem to be a big reason why PEG has been successful in practice: PEG
parsing frameworks are easy to implement, and the parallel between their
semantics and a function call stack makes them friendly to preexisting
programmer intuition. Moreover, we build heavily on this property, most
notably the context-sensitive machinery in Chapter 5.

Under this constraint, it is hard to conceive how to tackle left-recursion
without relying on iterative expansion (“growing the seed”) — or said
otherwise, without temporarily switching from top-down parsing to a
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limited form bottom-up mode.7,8 Given the iterative semantics, the
presence of hidden left- and right-recursion means that recursion is
ambiguous in general, and so we cannot determine which instances of
right-recursion should be blocked, and which should be allowed to recurse
freely.

4.4.4 A Pragmatic Way Out

So we seem at an impasse. Assuming we are bent on given left-associa-
tivity a semantics, what do we do in practice?

We compromise, and then, we cheat.

We decided to keep the simplistic interpretation we gave at the start
of this section: “a left-associative rule may not recurse within a right-
recursion”. Let’s recall that this works very nicely with infix binary
expression that are both left- and right-recursive (e.g., S → S + S | x),
which was the main reason why we wanted explicit associativity selection
in the first place.

But we can do better than that by allowing the user to manually re-
introduce recursion within a right-recursive invocation, when he has
himself determined that it is the desired semantics. We do so via an
“escape hatch” operator. In Autumn, the associated parser bears the
name GuardedRecursion.

Let’s denote the application of this operator on parser X as [X ], then we
can solve our previous problematic examples by writing S → S ([S ]) S | x
and S → AA | b [A] | a.

The result is both simple and flexible. By leaving a little bit of the
interpretation to the user (but only for the less common case of letting
right-recursion run in parts of left-associative rules) we avoid foisting

7This is the weakest part of the argument. But it must be said that no alternative to
iterative expansion has yet been found despite significant scrutiny. Since we work
under the constraint of keeping the semantics straightforward, it seems to be a fair
working assumption that a left-recursion handling scheme with a simple operational
semantics is not readily attainable.

8A counter-argument here might be that we could “just” expand the bottom-up
semantics to resolve the ambiguous recursions. While this angle might yield interesting
results, it means the whole semantics must be duplicated, once again running counter
to our constraint.
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upon him the much more significant overhead of a complex semantics,
while retaining the same expressivity.

4.4.5 Related Work

In what is the most relevant paper to our discussion of the semantics of
left-associativity [64], Medeiros et al. propose an axiomatic semantics of
PEG, where they handle associativity by assigning precedence levels to
nonterminals. A given nonterminal can recurse at the same position
via nonterminal occurrences that have a similar or higher precedence level,
but not a lower one. They give the example of the rule E → E1 + E2 | n
for left-associative addition. Because E2 cannot recurse through E1, it
will only ever match n.

The remaining questions are how to assign these precedence levels, and
what semantics does the assignment produce.

Unfortunately, Medeiros et al. only present a manual version and seem
to suggest that this assignment is a simply tooling issue [64]. They say
— after speaking of making left-associativity the default:

The disadvantage is that this makes specifying precedence levels
with right-associative operators a little harder, but this is a user
interface issue: a tool could use a YACC-style interface, with %left

and %right precedence directives and the order these directives
appear giving the relative precedence, with the tool assigning
precedence levels automatically.

As we have already established, it is not as simple as that: given the
existence of hidden left- and right-recursion, it is impossible to pinpoint
actual left- and right-recursion in advance of knowing the actual input.

Second, we argue that the semantics can be confusing.

Consider the (admittedly pathological) grammar A → A1A2 | aA2 | a.
Given the semantics proposed by Medeiros et al., this will always produce
right-associative matches: e.g., (a, (a, a)) for input aaa. In fact, there is
not a single way to reassign the precedence levels in this grammar that
would make it behave left-associatively. While it is true that no one in
their right mind would write such a rule — if left-associative behaviour
is desired, the second alternative is useless! — but rules with a similar
structure might occur when composing rules that make sense locally.
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We have experimented with Medeiros et al.’s semantics, and we believe
it would be possible to alter it such that there always exists a precedence
level assignment that produces the same associativity as the semantics
we ourselves propose. No single simple change will suffice to do so,
however. Most notably, it is not enough to either prohibit recursion into
nonterminals of the same precedence level, or to preserve the precedence
level for each nonterminal being matched, irrespective of input position.

From a user experience perspective, we think our approach foists less
complexity on the user, and makes the decisions more intuitive by making
the choices the user has to make closer to the object-level, namely (a) is
this rule left- or right-associative, and (b) are there instances of non-left
recursion that should be allowed to recurse?

4.5 Transparent Left-Recursion Handling in
PEG

Having established the semantics of left recursion with associativity
selection in the two previous sections (4.3 and 4.4), we are now ready to
present the algorithm that implements these semantics (Section 4.5.1),
discuss how it can be used in practice (Section 4.5.2) and talk about
some inherent performance issues, and what can be done about them
(Section 4.5.3).

Let us first briefly summarize the semantics we established in the previous
sections. We proceed by iterative expansion (“growing the seed”). Upon
first invocation of a left-recursive rule, left-recursion is disabled, then we
keep re-invoking the rule at the same input position, using the match
from the previous iteration as result for left-recursive invocations, until
the match stops growing. By default, this will yield right-associative
syntax trees. For rules explicitly marked as left-associative, all instances
of non-potentially-left recursion are blocked from recursing more than
once. This can be circumvented by the use of an escape hatch operator.

4.5.1 The Left-Recursive Algorithm

Figure 4.3 shows our left-recursion handling algorithm, including provi-
sions for left-associative rules. The algorithm applies to a left-recursive
parser, which is a type of parser that wraps a parser that is logically
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1 seeds = {}
2 recursions = {}
3 parse expr (a left-recursive parser) at position:
4 if seeds[position] [expr] exists then
5 return seeds[position][expr]
6 else if recursions[position] [expr] == 2 then
7 return failure
8 else if recursions[position] [expr] == 1 then
9 recursions[position][expr] = 2

10 result = parse(expr.operand)
11 recursions[position][expr] = 1
12 return result
13 current = failure
14 seeds[position][expr] = failure
15 if expr is left-associative then
16 recursions[position][expr] = 1
17 repeat
18 result = parse(expr.operand)
19 if result consumed more input than current then
20 current = result
21 seeds[position][expr] = result
22 else
23 remove seeds[position][expr]
24 if expr is left-associative then
25 remove recursions[position][expr]
26 return current

Figure 4.3: Left-recursion and associativity handling algorithm.
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left-recursive. This wrapper can be inserted manually or automatically,9
as will be discussed in Section 4.6. We will refer to the wrapped parser
as the operand of the wrapper.

The algorithm maintains two global data structures. First, a map (seeds)
from (position, parser) pairs to parse results. Second, a map (recursions)
from the same kind of pairs to an integer that designates the current
recursion level, used to avoid right-recursion in left-associative parses. A
parse result represents any data generated by invoking a parser at an
input position, including the syntax tree constructed and the amount of
input consumed. The parse results stored in our map are our seeds —
temporary results that can “grow” in a bottom-up fashion. Note that
our data structures are global, so that they persist between (recursive)
invocations of the algorithm. The parsing algorithm for other parsers
need not be concerned with them.

Let us first ignore left-associative parsers (i.e., uses of the recursions

data structure). When invoking a parser at a given position, the algorithm
starts by looking for a seed matching the pair, returning it if present.
If not, it immediately adds a special seed that signals failure. We then
invoke the operand, update the seed, and repeat until the seed stops
growing. The idea is simple: on the first go, all left-recursion is blocked
by the failure seed, and the result is our base case. Each subsequent
invocation allows one additional left-recursion, until we have matched all
the input that could be. For rules that are both left- and right-recursive,
the first left-recursion will cause the right-recursion to kick in. Because of
PEG’s greedy nature, the right-recursion consumes the rest of the input
that can be matched, leaving nothing for further left-recursions. The
result is a right-associative parse.

Things are only slightly different in the left-associative case. When
starting the parse, we set the recursion level for the (position, parser)
pair to 1. This will cause any non-left recursion to bump the counter
to 2, after which any deeper recursion will be blocked. The purpose
of this counter is simply to let a left-associative rule right-recurse only
once — as opposed to blocking right-recursion entirely, which would
not work for most rules that are both left- and right-associative such as

9Though Autumn does not support automatic insertions, for reasons that are explained
in Section 4.6.
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S → S + S | a !10 Given that right-recursion is now limited, the loop still
grows the seed, ensuring a left-associative parse.

A few notes about the algorithm. First, if used in conjunction with
packrat parsing, it requires memoization to be disabled while the left-
recursive parser is being invoked. This is a limitation the algorithms
shares with its predecessors: otherwise, we might memoize a temporary
result. In theory, it is possible to memoize sub-parser invocation that are
not involved in the left-recursive loop, but it is unclear if the benefits are
worth the bookkeeping costs.

Second, and as explained in Section 4.4, middle-recursion is blocked along
with real right-recursion. To enable it, Autumn does supply an escape
hatch operator (GuardedRecursion) which allows the guarded parser to
recurse freely. Conceptually, this is achieved by hiding the recursion
count in the recursions map, for the duration of the guarded parser’s
invocation.

4.5.2 Transparent Left-Recursion in Autumn

Figure 4.4 shows how the algorithm may be used in Autumn, through the
left_recursive combinator (which enacts the default behaviour: right-
associative for dual-recursive rules) and the left_recursive_left_assoc

combinator (left-associative for dual-recursive rules). The code fragment
uses these combinators to define a simple arithmetic expression syntax
with parentheses and a ternary (conditional) operator.11

Please do not use this code as a model, as it suffers from a performance
flaw that we shall discuss in the next section.

The first rule defines a “primary expression” that could be either a paren-
thesized expression, or a number (rule number, not shown). Parentheses
let us escape precedence, and so we want to refer to the root of the expres-
sion hierarchy (expr). Since this is a forward recursive reference (expr is
defined after primary_expr and both rules are mutually recursive), we

10We actually made this mistake in the algorithm published in our previous paper [57].
The mistake stemmed from how the left-recursive parser was not originally wrapping
the choice parser corresponding to the left-recursive rule, but left-recursive alternates
of that parser.

11We’re only dealing with syntax here, but if the semantics bother you can assume
that the ternary operator evaluates to its third operand if its first operand evaluates
to zero, and to its second operand otherwise.
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1 rule primary_expr = choice(

2 seq("(", lazy(() -> this.expr).guarded(), ")")

3 .push(xs -> new ParenExpr($(xs,0))),

4 number);

5
6 rule mult_expr = left_recursive_left_assoc(self ->

7 choice(

8 seq(self, "*", self).push(xs -> new MulExpr($(xs,0), $(xs,1))),

9 seq(self, "/", self).push(xs -> new DivExpr($(xs,0), $(xs,1))),

10 primary_expr));

11
12 rule add_expr = left_recursive_left_assoc(self ->

13 choice(

14 seq(self, "+", self).push(xs -> new AddExpr($(xs,0), $(xs,1))),

15 seq(self, "-", self).push(xs -> new SubExpr($(xs,0), $(xs,1))),

16 mult_expr));

17
18 rule expr = left_recursive(self ->

19 choice(

20 seq(self, "?", self, ":", self)

21 .push(xs -> new TernaryExpr($(xs,0), $(xs,1), $(xs,2))),

22 add_expr));

Figure 4.4: Using left-recursive parsing combinators in Autumn to define
the syntax of arithmetic expressions with parentheses and a ternary
(conditional) operator.
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resort to the method described in Section 3.1.3 and wrap the reference
in a lazy parser).

Right after that, the guarded() combinator is applied in order to create
an instance of the GuardedRecursion parser, our escape hatch operator.
This is required because primary_expr is called from left-associative
rules (mult_expr and add_expr) which block non-left recursion as per
our algorithm (cf. Figure 4.3). Without the escape hatch, it becomes
impossible to parse the input 1 + (2 + 3).

Finally, the AST produced by the parenthesized expression is retrieved
and wrapped in a ParenExpr node, which is pushed onto the value stack
via the push combinator (refer to Section 3.3.1 for more details).

Moving on, mult_expr and add_expr are fairly similar rules that each
express two left-associative infix operators at the same level of precedence.

As you can see, we explicitly mark the rules as left-recursive (and po-
tentially left-associative). Section 4.6 will discuss how it is possible to
automatically mark parsers as left-recursive, and why we rejected the ap-
proach — though we do automatically check for unhandled left-recursion
by default.

You may also notice that these rules are recursive, yet they do not use
lazy. For brevity’s sake in case of direct recursion, Autumn automates
the whole setup by passing this lazy parser to the combinator directly
(as the self parameters in our listing).12 Indirect recursion via lazy is
still supported.

Rule expr defines an expression to be a ternary expression or an additive
expression. It is left-recursive, but not left-associative, as the ternary
operator is right-associative.

Finally, we note that we could actually avoid the dual recursion fairly
easily: just replace the right self operands with the lower-precedence
rule (e.g., primary_expr within mult_expr). Then we can replace left_-

recursive_left_assoc with simply left_recursive (cf. the discussion
at the end of Section 4.3).

12Autumn also has the recursive combinator to help tersely define recursive rules that
do not require the left-recursive behaviour.
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4.5.3 Performance Woes

So, we now have a solution that supports left-recursion with a fairly
straightforward semantics that is well-defined for every possible case. For
the pesky dual left- and right-recursive case, we support associativity
selection. Is this the solution we have been looking for all along?

Alas, no. We can show that the code in Figure 4.4 exhibits undesirable
performance overheads.

The issue occurs whenever a left-recursive parser matches its non-recursive
part — in Figure 4.4, those are always the last alternative of the choice

combinator. In those cases, the algorithm will always call the non-
recursive part twice: first during the first iteration, as it will become
the initial seed; and then during the second iteration, when we will find
that the match did not grow. By itself, this seems benign, but the issue
compounds when left-recursive parsers are stacked over one another, as
is the case in our example, and is very often the case for infix operators.
Whenever N left-recursive parsers are chained in this way, the first non-
left-recursive parser in the chain will be called 2N times when we just
want to match what it matches. So in Figure 4.4, using the expr rule to
match a number will cause the number rule to be invoked eight times!
Real operator hierarchies run much deeper. For instance, Java and C
have about 10 contiguous levels of precedence that are left-associative,
adding up to a slowdown by a whopping factor of 1024 in those cases.
The complexity is somewhat amortized for longer expressions, but the
cost remains prohibitively high.

There are a couple ways in which this issue can be fixed. The first is to
memoize the non-left-recursive part of each left-recursive parser. This
is a tricky proposition, because we have to be sure that this part is
not involved in a left-recursive loop. As we have already established in
Section 4.4.2, this is impossible to know in general because of hidden
left-recursion. So the responsibility will fall squarely on the shoulders of
the user.

Another option is to exploit the memoization mechanism inherent to
our left-recursion handling algorithm (i.e., the seed storage) to avoid
reparsing the initial seed. For instance, here is how we would rewrite the
add_expr rule from Figure 4.4:
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1 rule add_expr = left_recursive_left_assoc(self ->

2 choice(

3 seq(self, "+", self).push(xs -> new AddExpr($(xs,0), $(xs,1))),

4 seq(self, "-", self).push(xs -> new SubExpr($(xs,0), $(xs,1))),

5 self,

6 mult_expr));

The only change is the lone self as third choice alternative. Upon the first
iteration of the algorithm, it will fail and a mult_expr will be matched. On
the second iteration (assuming no operators are present), it will match and
reuse the cached seed, hence completing the algorithm without causing
a second invocation of mult_expr. Just like the memoization trick, this
cannot be automated in general because of hidden left-recursion.

Clearly, we would be better served with a way to define left-associative
parsers that is not as risky.13 We will come back to this problem in
Section 4.9, after investigating two other avenues that can teach us a lot
about infix expression parsing (Sections 4.7 and 4.8).

But for now, we will investigate a problem closely related to transparent
left-recursion handling, namely automatic left-recursion discovery.

4.6 Automatic Left-Recursion Discovery
The algorithm in Figure 4.3 is used for parsing left-recursive parsers.
These parsers wrap a sub-parser that is logically left-recursive (i.e., if left
unhandled, it’s invocation will lead to infinite recursion). However, we
did not yet discuss how to identify logically left-recursive parsers. This is
the object of this section.

We note that this possibility has been largely ignored in the literature.
OMeta [105] and Medeiros et al.’s approach [64] detect left-recursion
“as it occurs”, which entails overheads that can be avoided by detecting
left-recursion in advance. The Katahdin [83] language, which pioneers
some of the techniques we perfected in our algorithm, requires left-
recursive grammar rules to be annotated explicitly and otherwise blocks
left-recursion by default — left-recursion will always fail in an unmarked
rule.

13Not to mention, that would be more in line with our goal of simplicity as described
in Section 1.3 — the easy way should be the right way.
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If we define a relationship FIRST(x, y) such that y is a direct sub-parser
of x 14 that can be invoked at the same position as x , then we can derive
a directed graph from each grammar where the nodes are the parsers,
and the edges are given by the FIRST relationship. In this graph, any
loop designates an instance of left-recursion.

In practice, computing the FIRST relationship will require computing
a predicate NULLABLE(x) that holds only if a parser x can succeed
without matching any input.

Theoretically, each parser in the loop is left-recursive. In practice, it
is better to “break up” the loop by designating a single parser as the
left-recursive one, subject to the algorithm in Figure 4.3.

We do note that the algorithm does support more than one parser being
marked as left-recursive, or even all of them. This does come with a pretty
important caveat, however: the parsers will do unnecessary extra work
in trying to grow all the seeds (one per left-recursive parser), sometimes
consequently so.

To illustrate this phenomenon, look at Figure 4.5. The rule A matches
one or more repetitions of the string “dcba”. Let’s assume all rules are
marked as left-recursive and hence subject to our left-recursion handling
algorithm. If we invoke A on the input string “dcba”, it will invoke B
twice: once to obtain the initial seed, and a second time to confirm the
seed cannot grow. B, in turn, invokes C twice, for the same reasons.
Similarly, C invokes D twice. In total, C is thus called four times, and
D eight times. In general, if there are L > 1 left-recursive parsers in
a left-recursive cycle, the parse will slow down by a constant factor of
2L−2 when compared to the case where only a single parser is marked
as left-recursive. The ability to grow the seed (e.g., if our input was
“dcbadcba”) does not impact this factor.

We do note that this slowdown does not cause the theoretical run time
to become exponential in the input size, as the slowdown factor is a
constant that depends on the grammar but not on the size of the input.15

Nevertheless, for big left-recursive cycles, the slowdown can become

14A direct sub-parser of aparser p is any parser that p may invoke directly from its
doparse method.

15One notable other cause for a slowdown of the same nature will be explored in
Section 6.1.2.
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A→ B a
B → C b
C → D c
D → A d | d

D

A

B

C

Figure 4.5: A grammar made out of a single left-recursive cycle (repre-
sented on the right). With starting symbol A, the grammar is equivalent
to (d c b a)+, and is suceptible to slowdown using our left-recursive
handling algorithm, if multiple rules are marked as left-recursive.

A→ A c | B a
B → A b | B b | b

A

B

Figure 4.6: A grammar with three left-recursive cycles (represented on
the right), two of which are nested in the third one. With starting symbol
A, the grammar is equivalent to (b+ a c*)+.

consequent, hence the preference for breaking left-recursive cycles by
marking a single parser as left-recursive.

Despite this caveat, we note that the ability of the algorithm to handle
multiple left-recursive nodes within a single cycle is essential, because
some parsers may be part of multiple left-recursive cycles, and it might
not be possible to break those cycles using only nodes that are not shared
amongst multiple cycles. The simplest example is that of embedded
left-recursion: whenever all the parsers in a left-recursive cycle are also
part of a bigger left-recursive cycle. This is illustrated in Figure 4.6.

Left-recursion detection boils down to cycle16 detection in directed graphs.

16A cycle is a trail (a path) in the graph with no repeated vertices excepted that the
first and the last vertices are the same. This is sometimes called a simple cycle,
simple circuit or elementary circuit, depending on the authors.
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This can be accomplished with Johnson’s algorithm [42].17 Johnson’s
algorithm has complexity O((v + e) ∗ (c + 1)) where v is the number of
vertices, e is the number of edges, and c is the number of cycles in the
graph. In theory, the number of cycles can be exponential in the size
of the graph. However, for grammars it is usually safe to assume the
existence of a constant number of cycles.

Johnson’s algorithm is relatively complex to implement — it is essentially
a dynamic programming algorithm built on top of Tarjan’s strongly
connected components algorithm [90]. It is also relevant that while our
FIRST relationship forms a de-facto graph, it is not programatically
available in a form that offers all the niceties of a real graph data structure.
It is of course possible to reify this graph, it just is additional work.

Fortunately, we do not actually need to find all cycles. It is sufficient
that we are able to identify nodes to be marked as left-recursive, such
that there is not any cycle left in the graph that does not contain a
left-recursive node. Algorithmically, this problem is a whole lot simpler:
it suffices to perform a depth-first traversal of the graph starting from
each grammar rule. We cut off the visit when encountering a cycle (i.e., a
node already on the current trail, which will be marked as left-recursive);
or when encountering a node that was already visited (i.e., removed from
the trail after the part of the graph reachable through it was entirely
visited). That algorithm has complexity O(v + e).

In general, identifying left-recursive nodes has two possible purposes. The
first is to automatically insert left-recursive parsers into the grammar.
The second is to warn the users that unhandled left-recursion has been
found and that the grammar is consequently not well-formed [27].

Autumn currently does not allow the automatic insertion of left-recursive
parsers — nor does it allow grammar rewriting in general (i.e., in-place
mutation of the parser graph). From our experience with previous
prototypes, we did find out that grammar rewrites do make grammar
debugging more arduous. They also hamper extensibility. Consider
for instance what should be done with the FIRST and NULLABLE
relationships in case of a grammar rewrite — should we compute them
before or after the rewrite, or maybe both? In that case, is there a way
to incrementalize their computation? Does any of this complexity need

17Not to be confused with the more popular algorithm from the same author whose
purpose is to find all shortest paths between pairs of vertices in a directed graph.
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to be pushed onto the user?

Autumn does however allow grammar transformations which create a
modified copy of the original grammar. This will be presented in Sec-
tion 6.5.6.

Regarding left-recursion, we will see later that we do not think transparent
left-recursion handling is necessarily the best solution. Given that —
using the detection algorithm described in this section — we can protect
the users from the harmful effect of unmanaged left-recursion, we do
not think that automatic insertion of left-recursive parsers is a necessary
feature.

The implementation of the left-recursion detection algorithm poses some
other interesting — but not strictly algorithmic — challenges. The first
one is how to compute the FIRST and NULLABLE relationships when
users can implement their own custom parsers using a general program-
ming language. There are no magical solutions here: the relationships
have to be defined for each type of parser, and if custom parsers are
allowed, it falls to its author to define the relationships for the new parser.
The second challenge is in how to walk and modify the grammar (i.e., the
parser graph). In Autumn, we tackle these challenges through an extensi-
ble visitor pattern [29] architecture which we describe in Section 6.5. This
enables defining the FIRST and NULLABLE relationships separately
from parsing semantics, and reusing the grammar traversal logic for
multiple endeavours. Section 6.5.5 will present the built-in visitor used
to compute the two relationships.

4.7 Expression Clusters

Expression clusters — which we initially proposed in our 2015 paper [57] —
are a new combinator used to express the syntax of infix expressions. The
idea is to express the syntax of all operators within a single combinator
(hence cluster).

Expression clusters are somewhat analogous to choice operators, where
additionally the order of the terms and explicit annotations are used to
enforce the proper precedence and associativity semantics. The terms
(i.e., the sub-parsers) are grouped by precedence, with the annotation @+

indicating an increase in precedence.

Figure Figure 4.7 repeats the grammar already shown in Figure 4.2d
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E →
E ‘+’ E @+ @left,

E ‘−’ E ,
E ‘∗’ E @+ @left,

E ‘/’ E ,
[0-9]+ @+

Figure 4.7: A grammar using annotations to specify precedence and
associativity within a single rule, which can be implemented by the
expression cluster combinator (this grammar also appears as Figure 4.2d).

(in Section 4.2 on infix expression encodings). In this grammar, the +

and - operators have the same precedence, which is lower than that
of the * and / operators. The @left or @right annotations indicate
the associativity at a given precedence level. Notice how the cluster
references itself recursively at all references levels, including in left- and
right-recursive positions.

An algorithm for the expression cluster parser is given in Figure 4.8. This
algorithm builds upon that of Figure 4.3. We now maintain a map from
cluster expressions to their current precedence. We iterate over all the
precedence groups in our cluster, in decreasing order of precedence (from
most binding to least binding). For each group, we verify that the group’s
precedence is not lower than the current precedence. If not, the current
precedence is updated to that of the group. We then iterate over the
sub-parsers in the group, trying to grow our seed. After growing the seed,
we retry all sub-parsers in the group from the beginning. Note that we
can do away with our recursions map from Figure 4.8: left-associativity
is handled via the precedence check. For left-associative groups, we
increment the precedence by one, forbidding recursive entry in the group.
Upon finishing the invocation, we remove the current precedence mapping
only if the invocation was not recursive: if it was, another invocation is
still making use of the precedence.

The biggest advantage of expression clusters is their “clean look”: there
is no need to encode precedence via the user of “layered” rules as in
grammars 4.2a and 4.2c of Figure 4.2. The usual concepts of precedence
and associativity are made explicit. Precedences are also scoped by
expression cluster, meaning it is possible to define multiple independent
expressions syntaxes without sharing a single precedence table (something
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1 seeds = {}
2 precedences = {}
3 parse expr (a cluster parser) at position:
4 if seeds[position] [expr] exists then
5 return seeds[position][expr]
6 current = failure
7 seeds[position][expr] = failure
8 min precedence = precedences[expr] if defined, else 0
9 loop: for group in expr.groups (in decreasing precedence order)

do
10 if group.precedence < min precedence then
11 break
12 precedences[expr] = group.precedence +
13 group.left associative ? 1 : 0
14 for op in group.ops do
15 result = parse(op)
16 if result consumed more input than current then
17 current = result
18 seeds[position][expr] = result
19 goto loop

20 remove seeds[position][expr]
21 if there is no other ongoing invocation of expr then
22 remove precedences[expr]
23 return current

Figure 4.8: Expression cluster parsing algorithm.
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layered approaches also do, however).

On the other hand, the reality of grammars is sometimes more messy than
a simple precedence scheme can handle. For instance, some operators
may restrict the range of syntactically valid operands. It is not for
instance possible (and intrinsically difficult) to skip precedence levels.
Another example is supplied by Java, which in its 8th version added
anonymous functions (lambdas) to the language. A lambda can form a
whole expression, or appear on the right of assignment or conditional
(ternary) expressions — but not on their left! This cannot easily be
represented with expression clusters, who depend on iteratively growing
the left-hand side seed!18

In practice, it is also useful to label the different terms of a cluster with
a name, if only for debugging and error-reporting purpose. Annotations
for AST constructions may also need to be added. As expression clusters
gets more spread out (and their DSL representation more and more
complicated), the aesthetic argument starts making less and less sense,
to the point where the layered construction is often easier to understand,
because more explicit.

Like transparent left-recursion handling, the algorithm also does not play
nice with memoization, and it also requires an escape hatch to parse
non-left recursion within left-associative operator’s operands.

For these reasons, we cut expression clusters out of Autumn, mostly at
the profit of a new combinator used to define a collection of operators at
a given precedence level, which will be introduced in Section 4.9.

We will however point out that expression clusters do not suffer from the
performance pitfalls highlighted in Section 4.5.3. The reason is that since
they encompass all the chained left-recursive operators, it essentially
fuses their seed expansion logic. As such, the worst case becomes that a
primary expression will be parsed twice, which is not so worrisome.19

18It should be said we think this particular case is a mistake in grammar design — it
would have been better to make lambdas a primary expression (of lower precedence
than all the operators). The grammar in the Java specification already allows illegal
expressions such as 3 + String.class or 1?2:3. Just because a language constraint
can be expressed syntactically does not always mean it should. Nevertheless, this is
a nice example of the expresiveness limitations of expression clusters.

19As long as you do not stack multiple expression clusters, which seems like an unlikely
degenerate case, but it is feasible.
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Expression clusters also teach us something genuinely valuable about
parsing infix expressions, namely that it is practical to parse multiple
operators in a truly bottom-up fashion (i.e., starting with the highest-
precedence operator) using iterative expansion. We shall return to that
idea in Section 4.9.

4.8 Left-Associativity via Left-Folding
So far we have presented two new combinators that enable left-recursion
within a PEG-like framework. One rather general (transparent left-
recursion handling, Section 4.5), and one rather specialized (expression
clusters, Section 4.7).

Both share two woes: the need to use an escape hatch operator when
specifying left-associativity, and incompatibility with memoizing combina-
tors. They also have issues of their own: a tendency to cause performance
issues for transparent handling, as well as a tendency to become too large,
inflexible and bloated for expression clusters.

But handling left-recursion is not an aim in itself. What we really want
is to be able to express the syntax of infix expressions — and crucially,
to get a syntax tree with the proper associativity out of them.

Perhaps we could borrow a page from some parsing tools which let you
specify operators using some “idiomatic” encoding (either explicitly, or
by rewriting the grammar for you) — then let you get a syntax tree
with the proper associativity by rewriting the original tree [31, 72]. For
instance, using the PEG idiomatic encoding (see Figure 4.2b), you would
write E → M (‘ + ’ M )∗ instead of E → E ‘ + ’ M | M .

Using such a solution, we could avoid the downsides of explicit left-
recursion handling. And since Autumn is inherently extensible, we do
not even need to resort to grammar or syntax tree rewrites — we can
write a new combinator that will provide the equivalent behaviour. The
rest of this section explores how we can do this.

4.8.1 Syntax Trees and Left Folds

As the notion of associativity is intimately related to that of syntax
trees, talk about potential solutions necessitates a little discussion of how
(abstract) syntax trees are usually constructed in Autumn. The basics
of syntax tree construction are covered in Section 3.3. We briefly recall
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some principles, which will be helpful in the construction of our new
combinator.

Autumn uses a stack data structure to construct syntax trees, which
we call value stack. Some parser combinators are able to push and pop
nodes on the value stack. Special handling is necessary to undo changes
to this stack in case of backtracking. This is a more powerful model than
is usual, and will be further discussed in Chapter 5. Autumn lets users
write these combinators explicitly, which allows them to directly generate
an abstract syntax tree instead of a mere parse tree.20

In general, the behaviour of a parser regarding the parse tree can be
modeled as a N ∗ → N ∗ function; where N is the set of syntax tree nodes.
The input of the function is the ordered set of syntax tree nodes emitted
by the direct sub-parser of the parser. The function returns the ordered
set of parse tree node that the parser emits. Let’s call this the syntax
tree reduction function or STR function for short. In Autumn, the input
nodes are typically popped from the value stack, while the output nodes
are pushed on it.

The default behaviour of a STR function is to simply pass the nodes
generated by the direct sub-parsers as is. The most common non-default
behaviour is to use all of the nodes emitted by the sub-parsers to build a
single higher-level node — for instance combining multiple statements into
a single compound statement, or multiple field and method declaration
into a single class declaration.

Under these conditions, it becomes possible to conceive of a STR function
that produces a left-associative tree for a non left-recursive parser. Such
techniques sometimes involve rewriting parts of an existing tree, in which
case they’re called tree rewriting. Their use is not uncommon [31, 72].
But with our proposed solution, rewriting is not actually necessary.

Any left-recursive rule can be split into (a) the union of its non-left-
recursive parts (corresponding to the possible initial seeds in Section 4.5)
— which we will call S , and (b) the union of the suffixes of its left-recursive
parts (corresponding to possible “growths” of the seed) — which we will
call R. Therefore, left-recursive rules can be expressed as X → S R | S
and consequently rewritten as X → S R∗.

20See shaded box on page 9.
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S → S ‘∗’ N | S ‘/’ N | N
N → [0− 9]+

S → N ( ‘∗’ N | ‘/’ N ) ∗
N → [0− 9]+

Figure 4.9: Two PEG grammars for the language of integer multiplication
and division. The first grammar is left-recursive, while the second is in
the S R∗ form discussed in this section.

Figure 4.9 shows two PEG grammars for a simple arithmetic language
with multiplication and division: the natural left-recursive form, and the
corresponding S R∗ form.

If we assume that the S part yields one node, while the R∗ yields a list
with one node per successful invocation of R, then the input to our STR
function is a list containing these two items.

To produce a left-associative abstract syntax tree from the (S ,R∗) input,
we propose using a left-fold. Figure 4.10 shows the definition for a left-fold
function. The result is initialized to the initial parameter, then built
up incrementally by calling function f once for each item in the list, using
the previous result as first parameter. For instance, fold_left(0, [1,

2, 3], f) will yield the same result as f(f(f(0, 1), 2), 3).

1 function fold_left (initial, list, f)

2 r = initial

3 for it in list

4 r = f(r, it)

5 return r

Figure 4.10: Pseudo-code implementation of a left-fold function.

We want to use the initial seed node (S) as initial parameter and the
list of R nodes for list. The function f has to be supplied by the user.
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4.8.2 Left-Folding by Hand

Using Autumn, we can define a new parser combinator that takes two
sub-parsers: one corresponding to S and one to R, as well as a function
to feed to fold_left.

Figure 4.11 shows how to use a left-fold to generate a left-associative
AST in the Autumn Java DSL for a grammar similar to that shown at
the bottom of Figure 4.9. This is not the preferred way to implement
operators in Autumn, as we will see shortly, but the example has didactic
value.

We now briefly explain Figure 4.11. For a basic understanding of the
Autumn framework, please refer to Chapter 3. The code snippet starts
with the Java equivalent of the left-fold function from Figure 4.10. It
is followed by the grammar rule mult_op which is a choice between the
multiplication and division operator. Matching the given operator causes
a corresponding AST node to be pushed on the stack, via the as_val

combinator.

The grammar rule mult_suffix corresponds to the ( ‘∗’ N | ‘/’ N ) part
of the bottom grammar in Figure 4.9. Recall that the push combinator
takes a function, whose result it will push on the value stack. The
function’s parameter is an array of nodes emitted by the parser on which
push is applied (in this case, a sequence with two sub-parsers). These
nodes have been popped from the value stack before being passed to the
function. Here the function simply returns the node array.

The next rule, mult_suffixes corresponds to the ( ‘∗’ N | ‘/’ N ) ∗ part
of our grammar. The repeat(0) parse combinator takes the place of the
Kleene star operator (0 denotes the minimum amount of repetitions). The
resulting parser collects all the pairs generated by calls to the mult_suffix
in an array, which is pushed on the value stack.

The final grammar rule, mult_expr, corresponds to the whole S rule
of our grammar: N ( ‘∗’ N | ‘/’ N ) ∗. push appears again and this
time we call our left-fold function. The $ function is a convenience
offered by Autumn that auto-casts an item to the inferred expected type
(one-parameter form), or indexes an array and similarly auto-casts the
retrieved element (two-parameters form). $(xs,0) is a node for the integer
matched by integer_literal, while $(xs,1) is the list of pairs pushed
by mult_suffixes. The function passed to the fold simply unpacks a
pair and constructs a BinaryExpression node, whose constructor takes
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1 <T, U> T fold_left (T initial, U[] list, BiFunction<T, U, T> f) {

2 T r = initial;

3 for (U it: list) r = f.apply(r, it);

4 return r;

5 }

6
7 rule mult_op = choice(

8 STAR .as_val(MULTIPLY),

9 DIV .as_val(DIVIDE));

10
11 rule mult_suffix =

12 seq(mult_op, integer_literal)

13 .push(xs -> xs);

14
15 rule mult_suffixes =

16 mult_suffix.repeat(0)

17 .push(xs -> xs);

18
19 rule mult_expr =

20 seq(integer_literal, mult_suffixes)

21 .push(xs ->

22 fold_left($(xs,0), $(xs,1), (left, pair) -> {

23 Object[] arr = $(pair);

24 return BinaryExpression.mk($(arr[0]), $(left), $(arr[1]));

25 }));

Figure 4.11: Using the Autumn Java DSL with the left-folding technique
to generate left-associative trees for multiplicative arithmetic expressions.

an operator, a left-hand-side node and a right-hand-side node (in that
order).

Depending on your perspective, this can either seem very elegant or very
ugly. It is a very small amount of code to solve our problem, built on top
of very general primitives. On the other hand, this code looks downright
verbose and ugly in the middle of what we hope to be a mostly declarative
grammar specification.

Fortunately, we can simply abstract the pattern away, by writing a new
combinator that performs the work for us.
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1 rule primary_expr = choice(

2 seq("(", lazy(() -> this.expr), ")")

3 .push(xs -> new ParenExpr($(xs,0))),

4 number);

5
6 rule mult_op = choice(

7 STAR .as_val(MULTIPLY),

8 DIV .as_val(DIVIDE));

9
10 rule mult_expr = left_fold(

11 primary_expr, mult_op, xs -> xs[1] == MULTIPLY

12 ? new MulExpression($(xs,0), $(xs,2))

13 : new DivExpression($(xs,0), $(xs,2)));

14
15 rule add_op = choice(

16 PLUS .as_val(ADD),

17 SUB .as_val(SUBTRACT));

18
19 rule add_expr = left_fold(

20 mult_expr, add_op, xs -> xs[1] == ADD

21 ? new AddExpression($(xs,0), $(xs,2))

22 : new SubExpression($(xs,0), $(xs,2)));

23
24 rule expr = right_fold(

25 add_expr, seq("?", add_expr, ":"),

26 xs -> new TernaryExpr($(xs,0), $(xs,1), $(xs,2)));

Figure 4.12: Using Autumn’s folding combinators to define a grammar
with left-associative arithmetic operators, parenthesized expressions and
a right-associative ternary operator.
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1 StackAction.Push binary_push =

2 (p,xs) -> new BinaryExpression($(xs,1), $(xs,0), $(xs,2));

3
4 rule mult_expr = left_fold(

5 prefix_expr, mult_op, binary_push);

6
7 rule add_expr = left_fold(

8 mult_expr, add_op, binary_push);

Figure 4.13: A refactoring of Figure 4.12 that assumes that all binary
operator share the same node class.

4.8.3 Left-Folding in Autumn

Figure 4.12 shows how we would actually define the same arithmetic
syntax as in Figure 4.4 via folding in Autumn.

We use the left_fold parsing combinator, which takes a sub-parser that
is responsible for matching the left- and right-hand sides, as well as a sub-
parser to match the operators; and automates the setup of Figure 4.11.
The final argument is a stack action that corresponds to the action passed
to the folding function.

We also use a right_fold combinator that builds right-associative parse
trees. This is not necessary — it is easy to build right-associative trees
using the standard combinators — but it makes for a pleasant symmetry
in grammar definitions.

We support more forms of the left_fold and right_fold combinators.
It is possible to specify different parsers for the left and right operands
(given the left-/right-associative interpretation, the right-/left-hand-side
parser will be used at most once). It is also possible to specify that an
operator needs to be matched — in Figure 4.12, add_expr can match a
single integer, without operators.

We could make the code slightly more elegant if we assumed that all
binary operators shared the same node class. Then we could also factor
out the stack action used to create that node — a small nicety that using
an embedded DSL affords us. Figure 4.13 shows what the change would
look like.

Is this the be-all end-all of left-associativity then? We are indeed getting
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close to something simple and declarative, but we have to mention two
small issues.

First, it is slightly unpleasant to have to factor out the operators into
a choice of their own, then to dispatch on an operator value pushed on
the stack in order to generate the correct node. This setup becomes even
uglier if one tries to mix postfix operators with infix operators within a
left fold (or equivalently prefix operators within a right fold).

Second, the right_fold combinator, just like transparent left-recursion,
can easily be used in grammatical patterns that yield a significant slow-
down.

Imagine a right-associative operator defined as (L ‘ ∗ ’) ∗ R (in the right-
folding case, it is the prefix that is repeated). If L happens to be the
same parser as R — as is in fact commonly the case — and the operator
is not present, we will end up calling the parser twice: first as a potential
prefix, then as the right-hand side. If you stack N right-associative on
top of one another, then the problem compounds to give us once again
slowdown by a factor of 2N .

We made it so that the combinator will automatically detect when its
left- and right-hand side are the same, so that it can locally memoize
its results in that case. But it is still easy to run into the problem when
both sides share sub-parsers — for instance if R→ L | X . We actually
experienced this particular issue firsthand when refactoring our Java
grammar to use left_fold and right_fold.

These two small issues lead to the definition of yet another pair of better,
safer combinators, which are the object of the next section.

4.9 Defining Expression Families

What we would really like, ultimately, is to offer a one-size-fits(-almost)-
all solution for defining the syntax of expressions — not only single
operators, but whole families of expressions — or algebra, to the more
mathematically-inclined.

In particular, learning from our previous attempts, we would like to avoid
problematic performance scenarios that are easy to trigger by accident
(like our left_recursive and right_fold combinators), and having to
perform advanced grammar refactorings in order to define more than one
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operator (as was the case in Figure 4.12).

We previously discussed what goes into the definition of expression syntax
in Section 2.5 on expression parsing. Let us recall some points we made,
which will guide our proposal.

Expression families will naturally include our usual nemeses, infix ex-
pressions — but also prefix and postfix expressions. Note that infix
expressions do not only include binary expressions but also mixfix expres-
sions of higher arity, e.g., C and Java’s ternary operator a?b:c. These
can be treated in the same way as binary expressions — as long as their
constituent operators are distinct. Using identical operators (e.g., a:b:c)
leads to a new kind of associativity, namely middle-associativity — i.e.,
interpreting a:b:c:d:e as a:(b:c:d):e. We will see how we can in
fact handle this pretty easily.

An expression family is typically divided into precedence levels. This is not
the only possible model, but it is by far the most common. Programming
languages syntax do admit exceptions to this model — for instance
parentheses usually reset precedence, or there may be constraints on
the operands of some operators — but it is general and well-understood
enough to form the basis of our explanation and implementation.

One hard constraint that we shall impose is that all operators at a given
precedence level must have the same associativity. Postfix operators
are naturally left-associative and prefix operators are naturally right-
associative, so we can mix infix and unary operators — and we definitely
want to, as this happens in practice.21

In real programming languages, left- and right-associativity operators
do not tend to mix at the same precedence level. Yet one can construct
examples that do not seem totally far-fetched. Consider the grammar
A → A + A | −A | a, marked as left-associative. We want to parse
a + a + a as +(+(a, a), a) (left-associative) but −− a as −(−(a)) (right-
associative). And because the operators are actually unambiguous, both
mix seamlessly: a + a +−a + a + a parses as +(a,−(+(+(a, a), a))). We
are strongly accustomed to unary operators binding more tightly than

21For instance, the instanceof operator in Java has the same precedence as ordering
operators (>=, <, ...) but is effectively postfix since its right-hand side is a type and
not an expression.



4.9. DEFINING EXPRESSION FAMILIES 115

binary operators,22 but it is hard to argue that anything is fundamentally
wrong with this example.

Nevertheless, we do disallow these associativity mismatches within our
new combinators, as they would add a lot of complexity for something
that no one tries to do in practice. As a proof of the flexibility of our
system, we will however show later how to re-introduce them.

Irrespective of associativity matching, operators may also be ambiguous:
consider for instance a single operator used both in infix and postfix
position. In this case, we fallback on PEG’s ordered choice semantics:
whatever was defined first takes precedence.

In order to build our new combinators, we want to synthesize the virtues
of our two previous proposals. Transparent left-recursion handling (Sec-
tion 4.5) makes it easy to combine multiple operators at the same prece-
dence level: just make it a choice between left-recursive rules (cf. Fig-
ure 4.4). On the other hand, it is susceptible to poor performance when
chaining multiple left-recursive combinators together — manual tuning
is required to reclaim normal performance. Left-folding (Section 4.8), on
the other hand, does not suffer the performance penalty23 but requires
left-factoring the expressions whose operator share a precedence level.

As already discussed at the end of Section 4.5.3, the issues with our
implementation of transparent left-recursion handling cannot be fixed au-
tomatically. But the issues of folding are less fundamental, and amenable
to a fix. We want a way to specify operators and AST construction logic
without having to factor out the operators and then perform some kind
of dispatch within the associated stack action (as is done in Figure 4.12).
We also want to discourage the use of different operands for right-folding
in order to prevent its performance pitfall.

We simply chose to name our new combinators left_expression and
right_expression. Figure 4.14 shows how the DSL for these new combi-
nators can be used in practice, to define the same syntax as Figure 4.4
and Figure 4.12. This ends up looking very much like the transparent
solution, but without the performance issues. Under the wraps however,
the logic is similar to that used by our folding combinators.

22And our combinators will actually enable that, but only when the associativity is
the same.

23Though its right-folding dual sometimes does, as explained in Section 4.8.3.
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1 rule primary_expr = choice(

2 seq("(", lazy(() -> this.expr), ")")

3 .push(xs -> new ParenExpr($(xs,0))),

4 number);

5
6 rule mult_expr = left_expression()

7 .operand(primary_expr)

8 .operator("*", xs -> new MulExpr($(xs,0), $(xs,1)))

9 .operator("/", xs -> new DivExpr($(xs,0), $(xs,1)))

10 .get();

11
12 rule add_expr = left_expression()

13 .operand(mult_expr)

14 .operator("+", xs -> new AddExpr($(xs,0), $(xs,1)))

15 .operator("-", xs -> new SubExpr($(xs,0), $(xs,1)))

16 .get();

17
18 rule expr = right_expression()

19 .operand(add_expr)

20 .operator(seq("?", add_expr, ":"),

21 xs -> new TernaryExpr($(xs,0), $(xs,1), $(xs,2))

22 .get();

Figure 4.14: Using the Autumn DSL’s left combinator to generate left-
associative trees for multiplicative and additive arithmetic expressions.
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The parsing expression used to parse the operands is specified using
.operand(...), but there is also a way to specify separate left and
right operands (.left(...) and .right(...)) — but only for left_-

expression. For right_expression we supply the uglily-named methods
._maybe_slow_left(...) and ._maybe_slow_right(...) to nonetheless
force specifying different operators if you know what you are doing
and have taken steps to avoid the performance penalty (e.g., using
memoization).

As you may see, each rule corresponds to a level of precedence. The
relationship between these levels is defined via simple layering via operand

(and its variants that we just discussed).

Implementation-wise, the combinators work essentially in the same way
as in Figure 4.12, with the difference that we now have separate stack
actions for each operator.

We could have made it so that our DSL would have returned instances
of LeftFold or RightFold, the implementation classes for our folding
parsing expressions. However, we preferred to create a new kind of
parsing expressions. The main reason is keeping the debugging out-
put straightforward: using the translation approach would have made
a couple of parsing expressions appear (choice between operators, suffix
sequences) that the user did not specify. Using our new LeftExpression

and RightExpression classes, the situation is simpler: the parsing ex-
pression has all operands and operators as direct sub-parsers. As an
optimization, however, whenever there is only a single operator or suf-
fix/prefix defined, a folding parser is returned — since no intermediate
parsers are required in that case.

As promised earlier, we show how to achieve middle-associativity for
mixfix operators of arity > 2 is fairly easy to achieve. For our ternary
operator, for instance, it suffices to replace the middle operand by a
recursive reference:

1 rule expr = right_expression()

2 .operand(add_expr)

3 .operator(seq("?", lazy(() -> this.expr), ":"),

4 xs -> new TernaryExpr($(xs,0), $(xs,1), $(xs,2))

5 .get();
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As for mixing associativity, it is similarly simple to achieve with recursion.
Below is a grammar implementing the left-associative version of rule
A → A + A | −A | a. You should be able to convince yourself that it
does indeed implement the mixed-associativity semantics we discussed
previously.

1 rule minus_expr =

2 seq("-", lazy(() -> this.expr))

3 .push(xs -> new MinuxExpr($(xs,0)));

4
5 rule expr = left_expression()

6 .operand(choice("a", minus_expr))

7 .operator("+", xs -> new PlusExpr($(xs,0), $(xs,1)))

8 .get();

4.10 Discussion
We presented no less than four ways to define the syntax of expressions,
all able to create left-associative parse trees, a capability made difficult
by the very semantics of the original PEG formalism.

The first of these solutions — transparent left recursion handling (Sec-
tion 4.5) — aims to let the user write grammars as naturally as possible,
and then annotate occurrences of left-recursion with a new parser combi-
nator (left_recursive). In order to do this, we had to tackle the thorny
question of what it meant for a PEG to be left-recursive (Section 4.3) and
left-associative (Section 4.4). While the solution seems nice in isolation, it
can lead to problematic performance when deployed to define the syntax
of an expression family.

We also detailed how we can identify unhandled left recursion (i.e., missing
left_recursion) statically in Section 4.6. That capability could also be
used to automatically insert the combinator, though we opted not to do
so.

The second solution — expression clusters (Section 4.7) — let us define the
syntax of whole expression families in a single rule. While we ultimately
ruled it impractical and it is no longer a part of the Autumn library, it
was a bridge of sorts between transparent left-recursion handling (whose
algorithm it is based on) and our fourth solution.
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Our third solution — folding combinators (Section 4.8) — offered a
simple and clean way to specify left- and right-associative operators by
folding a stack action over a list of suffixes (left fold) or prefixes (right
fold). We particularly focused on left folds, as left-associativity is the
problem to be solved. Left-folds are simple and handy, but they require
a bit of contorsion to define the syntax of multiple operators at the same
precedence level.

Finally, our last solution — expression family parsing (Section 4.9) —
synthesized our previous approaches by supplying a way to define multiple
operators at the same precedence level. It is implemented like the folding
approach, but the declaration of precedence levels looks much cleaner.

Quite clearly, we like that final solution a lot. It is really hard to misuse
and covers all the common use-cases (and then some less common too,
through judicious use of recursion).

The other two solutions implemented in Autumn (transparent left recur-
sion and folding) nevertheless have a place.

Transparent left recursion is particularly handy for porting grammars
that were not designed with Autumn in mind. Though in that case, it
is necessary to be careful about tuning the grammar so as to avoid bad
performance.

Folding can still be used for left or right-associative constructs that are
not part of an expression family. They can also look quite clean whenever
all the operators at the same level of precedence share a single node
representation (as showcased in Figure 4.13).

We do note that since Autumn checks for unhandled left-recursion by
default, we’re also not too worried about users accidentally introducing
left-recursion. The error will be caught and then easily corrected.

Finally, we note that, in a certain sense, the “edge” that folding has over
the transparent approach is that within folding we explicitly identify the
higher-precedence operand — which is the equivalent of the “non-left-
recursive part” (i.e., potential seeds) in transparent handling. If we could
identify that part, we could automatically memoize it!
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4.11 Related Work
Feature-wise, some works have paved the way for full left-recursion,
associativity and precedence handling within the PEG paradigm.

OMeta [106] is a tool for pattern matching over arbitrary data types.
It was the first tool to implement left-recursion for PEGs [105], albeit
allowing only right-associative parses.

Katahdin [83] is a language whose syntax and semantics are mutable at
run-time. It pioneers some of the techniques we successfully improved
upon — most notably the idea of blocking right-recursion to enable
left-associative parses — but is not a parsing tool per se. Compared to
Katahdin, our algorithm is much more widely applicable, as it can handle
hidden left-recursion and middle-recursion (cf. Section 4.4). Katahdin’s
algorithm is also tangled with the handling of operator precedence, as well
as the packrat store. Our algorithm makes the data structures explicit
(even though it could still be backed by the packrat store). We also note
that Seaton did not produce a formal description of the algorithm beyond
the code of Katahdin itself.

Medeiros et al. [64] have, independently of us, devised their own approach
to left-recursion in PEG. They approach the problem from a different
direction, presenting first an axiomatic semantics of PEG which is aug-
mented to support left-recursion, and then an operational semantics for
a virtual PEG parsing machine, which can be used as a basis for imple-
mentation. Their approach also supports a form of associativity selection
which is described and discussed in Section 4.4.5. Their approach is
notably used in IronMeta — a port of OMeta to C#. However, IronMeta
does not support associativity selection.

Our approach was to take the PEG formalism (and possible extensions
thereof) and enrich it with user-friendly, expressive and safe support for
infix expression parsing. Another plausible approach would be to start
from the CFG formalism (which has an intuitive story for associativity
selection, as stated in Section 4.4) and implement it as a parser combinator
framework. CFG-based parser combinator frameworks exist [38, 85] but
do not enable the definition of custom combinators.



Chapter 5

Principled Stateful Parsing

In Chapter 1, we made the case for improving parsing systems’ flexibility
and expressivity. In particular, we highlighted the fact that most parsing
formalisms and tools do not support the definition of languages with
context-sensitive features.

In this chapter, we start by giving some intuition as to what these context-
sensitive language features are useful for (Section 5.1). Next, we present
the state-of-the-art solutions in context-sensitive parsing (Section 5.2)
and show that they lack the property of context transparency: they make
grammars hard to write, maintain and compose by hardwiring context
through the entire grammar (Section 5.3).

Instead, we approach context-sensitive parsing through the idea that
parsers may recall previously matched input (or data derived therefrom)
in order to make parsing decisions. We make use of mutable parse state
to enable this form of recall.

More specifically, we introduce principled stateful parsing as a new trans-
actional discipline that makes state changes transparent to parsing mech-
anisms such as backtracking and memoization. To enforce this discipline,
users specify parsers using formally specified primitive state manipulation
operations (Section 5.5).

Finally, we show how a parsing system can support principled stateful
parsing (Section 5.6) as well as examples of how the approach can be
used in practice. Our approach builds on top of the combinator-based
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procedural approach we have been advocating, and introduces context-
sensitivity via a log of reversible change as the last ingredient to achieve
our vision for principled procedural parsing (cf. Section 1.4).

Most of the content of this chapter has been reworked from our 2016
“Taming Context-Sensitive Languages with Principled Stateful Parsing”
[58] paper, while Section 5.6 on implementation and operationalization is
entirely new.

5.1 Context-Sensitive Parsing
It might not be immediately evident what we mean by context-sensitive
language features. The usual way to characterize this class of features
is by contrasting Chomsky’s Context-Free Grammars (CFGs) with his
Context-Sensitive Grammars (CSGs) [14]. However, this is not precisely
what we have in mind here. Instead, we propose to characterize context-
sensitivity through the notion of recall, which we present in Section 5.1.1.
We then briefly explain why Chomsky’s CSGs are unhelpful to tackle the
problem in Section 5.1.2. Finally, we outline how the parser combinator
approach is particularly amenable to recall-based context-sensitive parsing
in Section 5.1.3.

5.1.1 Recall and Context-Sensitive Features

We propose to approach context sensitivity through the notion of recall,
i.e., the ability to accept sentences based on relationships between some
of their parts. This is more easily understood in parsing terms as the
capability to make parsing decisions based on previously matched input.

Here are a couple of examples of such recall-based context-sensitive
language features:

• In C, in order to determine whether the statement x*y; is the
product of x by y, or rather the declaration of a variable y which is
a pointer to type x , one must analyze the type definitions preceding
the statement.

• In Haskell and Standard ML, programmers can introduce operators
with custom precedence and associativity. The parser needs to
interpret these definitions in order to be able to parse the remainder
of the input.
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• Since Python has significant indentation, a Python parser needs to
detect when the indentation level increases or decreases.

• In XML, opening tags must be matched with corresponding closing
tags. For instance, <foo></foo> is valid while <foo></bar> is not.
As such, an XML parser must memorize the names of open tags,
at arbitrary levels of nesting.

• Many network protocols, including TCP, make use of length-delimi-
ted fields whose length is not known in advance but indicated by a
length field that precedes them.

Most parsing formalisms and tools cannot adequately handle these syn-
tactic peculiarities, leading to all sorts of hacks, and to the rejection of
parsing tools altogether, causing developers to write ad-hoc parsers by
hand. There are a few exceptions however, which we review in Section 5.2.
We will then explain the key properties almost all these solutions lack,
namely context transparency, in Section 5.3.

5.1.2 Context-Sensitive Grammars

The term context-sensitive is often associated with Chomsky’s Context
Sensitive Grammars (CSGs) [14], a grammar formalism that is strictly
more expressive than CFGs, by virtue of allowing rules to be bounded
by a “context”, i.e., strings of symbols to appear around the nonterminal
to be expanded.

Nevertheless, CSGs are only of little help, due to the intricate coding that
they require1. A CSG is made of rewrite rules αXβ → αγβ where α, β
and γ are strings of mixed terminals and nonterminals. These rules must
be non-contracting: αγβ, as a string of symbols, must not be shorter
than αXβ.2 As a matter of fact, these grammars were never meant to
describe programming languages, but natural languages, where the shape
of the rules make much more sense. In particular, it is difficult to encode
recall constraints: for instance, requiring the same string to appear at
two different locations in the sentence (assuming the string is not fixed
in advance).

1The same holds for a large body of work on mildly context-sensitive grammars. [44]
2In reality, CSG rules are not required to be non-contracting, but non-contracting
grammars and CSG describe the same set of languages, [15] and non-contracting
grammars are easier to operationalize in practice.
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As a result, parsing with CSGs has seldom been applied to programming
languages. Writing CSGs can prove challenging; for instance the grammar
for the language anbncn — exemplifying a relatively simple form of recall
— is notoriously tricky [32].

In fact, CSGs have not had much applications in natural parsing either.
The issue is that parsing CSGs is computationally intractable, as the
problem as been proven to be PSPACE-complete [53]. PSPACE — being
the set of problems that can be solved using a polynomial amount a space
— includes NP, the set of problems solvable in nondeterministic polynomial
time. The existence of a deterministic polynomial time parsing algorithm
for CSGs would therefore imply P = NP, which we know to be quite
unlikely.

5.1.3 Context-Sensitivity & Parser Combinators

Our work builds on top of the parser combinator approach to enable
recall. We allow users to write parsers which can manipulate mutable
state. However, unlike most parsing tools that allow state modifications
(e.g., ANTLR [72], Rats! [31]), we are principled about state use. Indeed,
it is relatively easy to mess up the state if the parsing tool does not take
special provisions to maintain its integrity.

General parsing algorithms typically do not proceed linearly. They
either explore multiple choices in parallel (typical of general CFG parsing
algorithms); or speculatively try alternatives when faced with a choice,
then backtrack if this alternative does not succeed (typical of PEG parsing
algorithms).

In the case of parallel exploration, multiple copies of the state need to be
kept, and potentially merged together. While this is certainly possible, it
does not play nicely with the semantics of most programming languages.
State has to be defined in a way that enables it to be forked and merged
as required. This can be achieved through the use of specialized data
structures.

Our work focuses on fixing the speculative execution scenario. When
backtracking happens, all changes made to the state during the speculative
execution need to be reversed. Parsers may also memoize the result
of a speculative execution. In a stateful model, these results need to
include the state changes incurred by the execution. As will be explained
in Section 5.4, we satisfy these requirements by introducing primitive
operations to manipulate mutable state in a principled way. All that is
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required from the user is to provide state changes as a pair of functions:
one that applies the change, and one that undoes it.

It would be disingenuous to suggest that we did compare context-sensi-
tivity-handling solutions for both approaches (speculative and parallel
execution) on equal terms. Having made a predetermination that the com-
binator approach would be conducive to our objectives, we endeavoured
to build context-sensitivity on top of it.

Nevertheless, we do sincerely believe that the speculative approach is
more advantageous in terms of extensibility and user experience, at least
in the context of recall. The user (grammar author) ultimately has to
implement these state changes himself, and supplying changes along
with an undo function is easier than writing routines to fork and merge
complex data structures.

5.2 State of The Art
As the problem of context-sensitive features in programming languages
is not new, it is not surprising that several solutions have been proposed.
We review these solutions in order to better put our contributions in
perspective. We do not purport to review the entire body of work on
context-sensitive parsing, but only the approaches closest to our goal. In
particular, we left out the literature on context-sensitive lexical analysis
(e.g., [99, 5]) which by definition only handles a small subset of all context
sensitivity issues.

5.2.1 Backtracking Semantic Actions

Parsing with backtracking semantic actions [93] is an approach developed
by Thurston and Cordy that builds upon a modified form of backtracking
LR algorithm3 with reversible semantic actions. Upon backtracking, state
changes are reversed. Two important restrictions apply: state changes
can only occur during reductions, and the state can only affect the parse
through semantic conditions that trigger backtracking.

3A backtracking LR parser is a LR parser that, upon encountering a conflict, tries
one possible action and subsequently backtracks to the other actions if the choice
leads to a parse failure. This is different from GLR, which is a LR parser that
explores conflicting actions in parallel. Backtracking LR is generally eschewed in
favour of GLR which has much more reasonable bounds and practical run time on
nondeterministic grammars. See Section 2.1.4 for more details on LR and GLR.
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The backtracking semantic actions approach is employed in the Colm [92]
source transformation language developed by Thurston as his PhD thesis
project.

The major difference between backtracking semantic actions and our
approach is that it builds upon bottom-up parsing while our approach
builds upon top-down recursive-descent parsing. Backtracking semantic
actions can only run semantic actions and predicates after reductions.
This is already quite powerful — it can be used to implement all the
examples from Section 5.1.1 except Haskell/SML — but it does not allow
defining custom parsing operators that make use of the state.

For instance, our approach could handle a language that enables programs
to extend the language’s own grammar (such as Haskell and SML). This
is impossible using only semantic predicates.4 In essence, the semantic
predicates allow for disambiguation between productions, but cannot
match data directly. As predicates run upon reduction, they also cannot
be used to guard a nonterminal, preventing the parser from attempting a
match that will necessarily be discarded.

To reverse semantic actions that get backtracked over, the Colm im-
plementation allows either manual specification of undo actions, or the
automatic computation of the undo procedure (reverse execution). This
is made possible by the fact that the language runs on a custom virtual
machine, which is able to record reverse instructions as it executes a
semantic action. In contrast, Autumn runs as a Java DSL and we require
the user to specify the undo actions manually, although with some added
facilities for capturing state to be restored via lambda capture, as well as
abstracting away and composing the undo logic. These points are further
elaborated in Section 5.6.3.

We consider backtracking semantic actions [93] to be the safest and most
convenient system for context-sensitive parsing among those presented
in this section. In a sense, it is the bottom-up mirror of our approach
— as both employ backtracking and undo actions. The differences can
largely be explained by the underlying systems — our system being
geared towards pervasive extensibility, while LR is harder to steer and
extend. We also enable state handling beyond change reversal: for

4However, in his Colm [92] language, the author pairs this algorithm with a lexer that
can be augmented with token-generation actions. The lexer can then be used to solve
the issue by collaborating with the parser.



5.2. STATE OF THE ART 127

instance Autumn enables capturing the set of state changes produced
by a parser. This is quite useful in order to support features such as
memoization, or capturing a set of settings and declarations that have to
be brought back “in scope” later.

5.2.2 Data-Dependent Grammars

Jim et al. [41] proposed data-dependent grammars, a formalism which
permits context sensitivity by allowing rules to be parameterized by
semantic values. A parameterized nonterminal appearing on the right-
hand side of a rule acts as a form of function call that also returns
a semantic value. These semantic values are computed by semantic
actions written in a general-purpose programming language. There are
also semantic predicates which can make rule alternatives succeed or fail
depending on a semantic value.

Data-dependent grammars can be compiled to a format accepted by a
target parsing tool, which must support fairly general semantic actions.
In subsequent work [40], the authors introduced a new kind of automa-
ton that can be used to implement parsers recognizing data-dependent
grammars. These techniques are put to work in a tool called Yakker.

Data-dependent grammars, though theoretically compelling, suffer from
usability issues. The value-passing model means that the parse state
needs to be threaded throughout the grammar. Making a rule depen-
dent on a new semantic value means that all rules through which this
rule is reachable might need to be modified to pass this value around.
Maintainability-wise, this is far from ideal. Moreover, it harms compos-
ability, as a rule must be aware of all states it has to pass through.

Afroozeh and Izmaylova [2] show how advanced parser features such as
lexical disambiguation filters, operator precedence, significant indenta-
tion and conditional preprocessor directives can be translated to data-
dependent grammars. Quite clearly, the task is non-trivial and one comes
away with the feeling that dependent grammars are better suited as an
elegant calculus to be targeted by parsing tool writers rather than as a
paradigm that fits the needs of tool users. The machinery implementing
the formalism is also distinctively non-trivial, involving a multi-stage
transformation into a continuation routine or into a new kind of automa-
ton. In contrast, our approach is conceptually simpler and can be layered
on top of a general-purpose programming language.

Finally, we note that the much older Definite Clause Grammars
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(DCGs) [17] formalism (cf. Section 2.1.3) works on almost exactly the
same principle, but building upon logic programming. Accordingly, it
suffers from similar limitations.

5.2.3 Monadic Parsers

Monadic parsing [35] is a well-known way to build functional-style parser-
combinator libraries, made popular by Haskell libraries such as Parsec [61].
In this paradigm, the type of a parser is a function parameterized by
a result type, i.e., with signature string → (string, result), where the
parameter string is the input text and the returned string is the input
remaining after parsing. The parser type is also a monad instance,
meaning there is a bind function whose signature, in Haskell notation, is:

Parser r1 -> (r1 -> Parser r2) -> Parser r2

where r1 and r2 are result types. This function takes a parser as first
parameter, and a function which transforms the result of the parse into
another parser as second parameter. When invoked, the parser returned
by bind will invoke the first parser, pass its result (of type r1) to the
function, then invoke the parser this function returns, yielding a result of
type r2.

The important point about monadic parsers is that they can handle
context sensitivity. Indeed, the second parameter to bind (the function)
returns a parser from a result. This means that the behaviour of the
parser returned by bind depends on data acquired during the parse: this
is a form of recall.

An in-depth analysis of this aspect was done by Atkey [4]. In particular, he
formalizes monadic parsers by introducing active right-hand sides, which
are the right-hand sides of rules that can contain monadic combinators.
These combinators generate grammar fragments at parse-time (much
like a monadic parser generates a new parser), hence the term active.
While monadic parsing seems at first sight very similar to the data-
dependent grammars from Section 5.2.2, Atkey [4] carefully contrasts the
two approaches:

We characterise their [Jim et al. ] approach as refining context-free
grammars: each Yakker grammar has an underlying context-free
grammar with regular right-hand sides, and the constraints allow
for sophisticated data-dependent filtering of parses. In contrast, we
consider active right-hand sides that generate the grammar as the
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input is read.

Nevertheless, monadic parsers suffer from the same pitfalls as data-depen-
dent grammars: the state is threaded through the grammar (or code),
leading to poor maintainability and composability.

5.2.4 Attribute Grammars

Attribute grammars [51] associate attributes to syntax tree nodes. The
attributes can be synthesized: their value derived from the attributes of
sub-nodes, or inherited: their value computed by a parent node. The
formalism supports context-sensitive parsing through production guards
predicated over attributes.

However, attribute grammars are not context-transparent. To enable
recall, they need to propagate the recalled value from the definition site
to the use site, through a chain of of synthesized and inherited attributes.
Even reference attributed grammars [33], which allow attributes to contain
references to nodes, do not fully solve this distribution problem.

5.2.5 Unprincipled Stateful Parsing

Manipulating parse-wide state can be an effective solution to the problem
of data dependence: the data depended upon can be written in the state
when encountered and read or even altered later on.

Broadly speaking, we can distinguish two big classes of stateful parsing
tools. First, there are parser combinator libraries that allow users to
write their own sub-parsers. Notable examples include Parboiled [23],
Lua Peg [36] and Scala’s parser combinators [67]. Since these custom
parsers are implemented in a general-purpose programming language,
they can manipulate state, even though the libraries make no provision for
this. Second, there are parsing tools that provide very general semantic
actions and semantic predicates. Notable examples include Bison [91]
and ANTLR [72]. These work much like their counterpart in Yakker (cf.
Section 5.2.2), except that instead of returning a value, semantic actions
may modify a global state object.

Unfortunately, most parsing tools in both categories do not make the
necessary provisions for dealing with backtracking and memoization: if
the parser backtracks over a construct that made state changes (semantic
action or custom parser), these changes need to be undone; if the parser
can memoize the result of a construct, state changes need to be memoized
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as well. In the absence of such guarantees, a construct can only access
state which it is sure has not been corrupted by changes that should have
been discarded. It must also be sure that some state-altering construct
was not skipped due to memoization. These are tricky propositions to
verify even for medium-sized grammars, and every change to the grammar
threatens to falsify them.

One may think that solving the backtracking problem is simply a matter
of inserting a construct that reverses state changes whenever a rule fails.
However, a rule can be backtracked over even if it succeeded. It suffices
that one of the rules through which our rule was reached fails. Hence this
scheme would entail, for each state-altering construct, the modification
of every rule through which it can be reached.

5.2.6 Rats!

Rats! [31] is a fully-memoizing (packrat) PEG parser. Rats! is, to the
best of our knowledge, the only stateful parsing tool that provides some
guarantees for state usage, by ensuring that state changes are discarded
if certain conditions are met.

For this purpose, Rats! introduces transactions that wrap rules under
which state changes might occur. A transaction can either succeed, in
which case its state changes are retained, or fail, in which case the changes
are discarded. Rats! also requires that a nonterminal invoked at a given
position within a transaction must always modify the state in the same
way, no matter how that nonterminal was reached. This requirement
ensures that Rats! will never have to discard the memoization of a rule,
hence upholding the linear-time guarantee of packrat parsers.

In spite of its advantages, this scheme has two important pitfalls. First,
it requires nonterminal invocations at a given position to always return
the same result. This precludes parsing expressions that modify the
behaviour of the parsing expression they invoke. However, this capability
is valuable in practice. For example, we use it to enable transparent
left-recursion handling in Autumn in the presence of context-sensitivity,
as well as to enable longest-match parsing in the same conditions.5

Second, state changes are not memoized. If a rule succeeds after applying
a state change, but the enclosing transaction fails, the changes are lost.

5See Section 4.5 for details on transparent left-recursion handling, and Section 5.6.4
for implementation details on the Longest parser.
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If we wanted to call the rule at the same position again, the memoized
result would be used and it does not include the state changes. This
means that a state change cannot safely be referenced by two different
transactions, and that transactions cannot be re-tried after a state change
higher up in the grammar hierarchy.

5.2.7 Marpa and Ruby Slippers

The Marpa [45] parsing framework enables some context-sensitive lan-
guage features using a technique called ruby slippers. Marpa is based on
the Earley algorithm, a chart-based algorithm that performs a breadth-
first exploration of the possible parses (cf. Section 2.1.5). The Earley
algorithm consequently never backtracks and Jeffrey Kegler, the author,
observes that it is possible for the parser to become left-eidetic: at each
position, aware of every possible interpretation of the input already
processed.6

Marpa also enables for grammar rules to generate events, which are
processed by a user-supplied event handler. Essentially, semantic actions.
Because an Earley parser never backtracks, the event handler can manip-
ulate the state in a way that is relatively safe: it is not necessary to undo
the state due to backtracking, but changes to the state have to consider
that there may be multiple concurrent interpretations of the parse (due
to Earley’s breadth-first nature). The left-eidetic property does mitigate
the issue by enabling inspection of these interpretations, but one still has
to be careful of the impact of future grammar changes.

Finally, the event handler is limited in its capability to affect the parse,
being only able to manipulate the lexical (token) stream, and potentially
to restart a parse to undo previous changes to the stream. Nevertheless,
the ability to generate virtual tokens — the ruby slippers technique —
does enable to solve many context-sensitive issues such as semicolon
insertion or layout-sensitive parsing. [46]

5.3 Context Transparency
As the previous section has shown, enabling the definition of context-sensi-
tive languages without jeopardizing maintainability, composability or even

6Strictly speaking, each such “interpretation” is a minimal subset from the set of states
held in the Earley chart (cf. Section 2.1.5) that could lead to the current Earley state.
In practice, it helps to think of these interpretations as partial ASTs for the left part
of the input.
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safety is no easy feat. We put forward the notion of context transparency
as the gold standard that a context sensitive parsing mechanism needs
to meet in order to be considered sufficiently practical.

A grammatical construct is context-transparent if it is unaware
of the context shared between its ancestors and its descendants —
meaning this shared context is not encoded in the declaration of the
construct.

Data-dependent grammars, monadic parsers, DCGs and attribute gram-
mars are not context-transparent because of the need to explicitly pass
values around. For instance, consider two data-dependent grammars7:
a grammar for a Python-like language with significant indentation, in
which the rules for block-level constructs (statements, definitions) are
parameterized by the indentation level; and a grammar for a simple
query language (something like SQL), in which newlines can be used as
whitespace separator. We want queries to be able to appear inside our
code, potentially over multiple lines, while preserving the indentation
requirement of the Python-like language.

A simple solution is to rewrite the whitespace-matching rule of the query
language to check that any newline is followed by enough whitespace to
match the current indentation level.

The difficulty is in how to communicate the current whitespace level to
this rule. In all the previously cited grammar paradigms, every rule that
may directly or indirectly match whitespace (which is to say all of them)
must be rewritten to pass the indentation level around explicitly, so that
the whitespace matching rule may access it. In a context-transparent
grammar paradigm, you could simply access the indentation level from
the whitespace-matching rule without rewriting any intermediary rules.

Stateful parsers also are not context-transparent, as they must ensure
that no unforeseen backtracking or memoization takes place. For instance,
if a parser a manipulates the state and its callers do not expect it to
backtrack, it cannot be swapped for a parser c(a) (where c is some parser
combinator) without first ensuring that c(a) never backtracks over a.

7The same reasoning applies to monadic parsers, DCGs and attribute grammars.
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Marpa is not context-transparent either, as introducing new ambiguity
(or even nondeterminism!) in the grammar can cause unexpected results
because of lexical-level transformations made by previously-defined event
handlers. In this case, the issue is not so much that new rules have
to be made context-aware, but rather that they could be affected by
lexical-level changes — so that the old rules have to be made aware of
the new rules they could interfere with.

Lack of context transparency makes grammars hard to reason about,
hence hard to write and to maintain: refactoring, extending or composing
grammars becomes particularly challenging, because each change to
a rule might entail the need to modify all rules through which it is
(transitively) reachable. In stateful parsers, such changes are liable to
introduce undesired backtracking or memoization.

We suggest a simple solution: use stateful parsing (which does not thread
context through the grammar), but undo state changes upon backtracking
and allow the memoization of state changes. And to achieve this, we
introduce a new context sensitivity handling discipline: principled stateful
parsing.

5.4 Intuition
In Section 5.1, we established the relevance of context-sensitive parsing
and introduced the notion of recall as a way to express context-sensitive
features in terms of backreferences to previously matched input. We
enable recall by storing the matched input (or data derived thereof) in a
mutable data store: the parse state.

We now dive into how principled stateful parsing is able to work with
parse state while avoiding the usual pitfalls of stateful parsing (cf. Sec-
tions 5.2.5 and 5.3). Before diving into a formal explanation, we present
the remarkably simple intuition behind the approach.

The point of using state is to pass context around implicitly, without
the need to hardwire context in the grammar, hence achieving context
transparency (cf. Section 5.3).

If the execution of a parser were linear, simply reading/writing to this
state would suffice. Unfortunately, parsers must sometimes perform
speculative executions that may fail further down the line, a phenomenon
called backtracking. When backtracking occurs, all state changes in the
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speculative execution being backtracked over must be reversed. Hence,
we need an operation that can take a snapshot of the state at a given
point, and an operation that can restore the state described by such a
snapshot.

Given these requirements, it helps to think of the parse state as a log of
the operations applied to the state, which can be snapshot and rolled
back as required. Appropriately, this is also how we formalize the parse
state.8

As an aside, let’s note that it is not a requirement for these snapshots to
be fully self-contained or persistent. The actual requirement is for them
to be valid at long as we could have to restore them.

Additionally, it is sometimes desirable to save the result of a speculative
execution (whether it failed or not), i.e., the state changes it induced:
a delta acquired by performing a diff between the states before and
after the execution. This can be represented as a slice of the log of state
modifications. It is also necessary to be able to merge these changes
back into the state. The most straightforward application of the diff
and merge capabilities is the memoization of parse results. However,
other valuable use cases exist in the presence of context-sensitivity, such
as longest-match (Section 5.6.4) parsing and transparent left-recursive
parsing (Section 4.5).

This motivates the need for four primitive state-manipulation operations:
snapshot, restore, diff and merge. These operations are described in
Section 5.5.3.

Principled stateful parsing is an approach where parsers behave
transactionally: each parser invocation either succeeds or leaves the
state untouched. Additionally, it is possible to generate and merge
deltas corresponding to state changes made by parser invocations.
All this is made possible through the use of formally specified state
manipulation operations.

8The implementation also closely follows this principle, each state change being
represented as a pair of apply and undo actions.
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Principled Stateful Parsing and Transactional Databases

Our state handling system bears some similarity to transactional
databases — we even used the word “transactional” to describe it. There
are indeed similarities: parsers may induce state changes. If a parser
fails, all the changes induced by itself and all of its successful sub-parsers
must be undone, just like a database transaction.

However, the metaphor only goes so far: transactional databases typically
deal with multiple transactions, which may be concurrent. A parse is
more similar to a hierarchy of nested transactions (one per parser), with
the grammar’s root corresponding to the outermost transaction.

Our parsing system is also not concerned with persistence: all parse state
is transient, so should a system failure occur during a parse, the state is
scraped and the parse has to be started anew.

Nevertheless, the comparison is a good way to understand principled
stateful parsing as a first approximation. And it is possible that pondering
the similarities of both systems might yield interesting insights for future
developments.

5.5 Formalization

We formalize our approach using the Z notation [86], though eschewing
its schema calculus in favor of a purely functional presentation.9 The Z
notation is a formal specification language that builds on top of Zermelo-
Frankel set theory, first-order logic and simply typed lambda calculus.
As such, Z can be seen as a language where functions can be defined in
lambda calculus extended with predicates from first-order logic and set
theory. Formal assertions over the functions can be made using the same
notation. We also note that in Z, all types used in the lambda calculus
are sets. We will introduce elements of notation as we go, but if any
doubt persists, we recommend checking The Z notation by Spivey and
Abrial [86].

9To improve the presentation, we took some liberty with the Z layout (but not with
the notation). A machine-understandable version of the specification is available
online [59].
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In our formalization, parsers are simply functions manipulating parse
state (Section 5.5.1) whose set-theoretic signature is given in Section 5.5.2.
Section 5.5.3 formally specifies the primitive state-manipulation opera-
tions that were briefly introduced in Section 5.4. Finally, Section 5.5.4
gives the semantics of parser invocation by specifying the call opera-
tion, which maps a parser (as defined in Section 5.5.2) to a single state
transformation.

5.5.1 Parse State

At the core of our approach lies the notion of parse state. The parse
state abstracts over a general mutable data store. We do not place any
constraint on the data within the store. This is formalized as follows.

[CHANGE ]
STATE = seqCHANGE

The square brackets introduce the abstract set CHANGE of all state chan-
ges. What exactly constitutes a state change (most likely the mutation of
a memory location) is an implementation concern that is not relevant to
the formalization. If it helps, you may think of the state as a key-value
store, and changes as writes or deletions from this store — though this is
entirely immaterial to the rest of the formalization.

STATE is the set of possible parse states: i.e., of possible configurations
of our mutable store. We represent a parse state as a sequence of state
changes. This means that a state can be seen as a log of the operations
over the mutable store it represents, assuming some well-defined initial
state.

In Z, the set of sequences of items from the set S is written seq S and
corresponds to the power set of pairs (i, s) ∈ N× S , or equivalently to
the power set of partial functions N 7� S . In each sequence, the indices
are unique and consecutive.

In practice, an implementation of the approach will want to use parse
state to reify important parsing notions, such as input position. We
consciously avoided making our formalism needlessly specific, hence the
absence of some usual parsing notions such as input position. This enables
using our approach to parse non-linear inputs (e.g., object graphs), or
perform computations that only bear nominal resemblance to traditional
parsing, even though this direction is outside the scope of this thesis.
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5.5.2 Parsers

A parser represents a computation over the parse state that either succeeds
or fails, and has side effects on the parse state, in the form of state changes,
as introduced in the previous section.

TRANSFORM = STATE → STATE
PARSER = STATE → seqTRANSFORM
RESULT ::= success | failure
result : STATE → PARSER→ RESULT

Formally, a parser is a function from a state — the current state at the
time of invocation — to a sequence of transformations, which move from
one state to another. This amounts to defining a parser in terms of its
execution trace.

Two things seem to be missing from this definition. First, it does not
say if the parse succeeds when run over a specific state. This property is
exposed separately through the result predicate rather than as part of
the PARSER signature. This approach is not significant: it simply makes
the math look nicer. Second, the input being parsed does not explicitly
appear in the signature. Instead, the input is assumed to be held within
the parse state.10

A parser is a recognizer of states. It accepts states for which result state =
success holds. If within the input state one dissociates the parse input
from the rest of the state (the context), one can see that the parser
recognizes — hence also defines — different languages depending on the
context.

But a parser is also a transformer of states as well: when invoked it
performs a STATE → STATE transformation. In Section 5.5.4 we
explain how to derive this transformation from a parser (recall that
parsers have type PARSER defined as STATE → seq TRANSFORM ), as
a means of defining the semantics of a parser given its execution trace. We
could alternatively have defined PARSER as STATE → TRANSFORM
(with the result being the composition of the transformations in the
sequence), or directly as STATE → STATE . We chose to emphasize
the execution trace — a sequence of transformations — instead, because
the primitive state operations described in the next section are suppliers

10Nothing precludes the input from being mutable, even though we have not investi-
gated the usefulness of the idea.
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of such transformations, to be composed to yield the transformation
performed by the parser.

This representation also emphasizes that the parse state is both an input
of the parser and an input of the returned transformations. This reflects
the fact that a parser is context-sensitive: it chooses which operation to
perform depending on the state. This is closely related to the notions
of active right-hand sides [4] and monadic parsing [35]. In fact, each
operation in the sequence is chosen depending on the state obtained
by running the initial state through the composition of all preceding
transformations. Abstracting over this makes the specification much
simpler, without altering its meaning.

5.5.3 Primitive Operations

We now present six primitive operations (amongst which the four an-
nounced in Section 5.4) that parsers can perform.

SNAPSHOT = seqCHANGE
DELTA = seqCHANGE
call : PARSER→ TRANSFORM
snapshot : STATE → STATE
diff : SNAPSHOT → STATE → DELTA
applyChange : CHANGE → TRANSFORM
restore : SNAPSHOT → TRANSFORM
merge : DELTA→ TRANSFORM

Call Of these six, call has a special status: it represents the invocation of
a parser. We will define this operation in Section 5.5.4, hence specifying
the semantics of parsers given their execution trace. Note that the
signature definition of call expands to PARSER→ STATE → STATE :
a parser must be called with a state as parameter.

Snapshot A snapshot, as the name implies, is a capture of the state at
a specific point during the execution. Naturally, this makes SNAPSHOT ,
the set of all snapshots, equivalent to STATE . Formally, the snapshot
operation, which creates such a capture, is simply the identity function.

snapshot = λ x : STATE • x

Diff The diff operation returns a DELTA object representing the differ-
ence between a snapshot and the current state, as a set of state changes.
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As a precondition, this operation requires the snapshot it receives to be
a prefix of the current state. This is expressed with the Z built-in prefix
infix operator. By keeping the deltas append-only, we ensure that a delta
can be later merged to any state, not just the one corresponding to the
snapshot.

∀ sn : dom diff • ∀ st : dom (diff sn) •
sn prefix st

Since deltas are state suffixes, DELTA, the state of all deltas, is equivalent
to STATE .

Assuming the precondition is respected, diff can be defined as the re-
mainder of the current state after chopping off the prefix corresponding
to the snapshot. In Z, the squash function packs the indices (left-hand
side) of a set of pairs in N × S , where S is some set, in order to turn
this set into a proper sequence. For instance, it turns {(2, x), (5, y)} to
{(1, x), (2, y)}.

diff = λ sn : SNAPSHOT • λ st : STATE •
squash (st \ sn)

Transformations All operations except diff and snapshot return a
transformation. Recall that we defined PARSER as STATE → seq
TRANSFORM . The transformations returned by the operations are
precisely those which will be part of a parser’s execution trace. diff
and snapshot are different because they do not modify the parse state.
Instead, diff and snapshot create new objects, which can be freely passed
through the parse state.

ApplyChange The applyChange operation is very simple: given a
change, it simply returns a transformation that applies this change, by
appending it to the change log. It can be defined as follows, using the
concatenation operator (a) to append the change to the old log.

applyChange = λ c : CHANGE • λ st : STATE •
st a 〈c〉

This “operation” models the fact that parsers can perform arbitrary state
changes.
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Restore The restore operation takes a snapshot as input and returns
a transformation that brings the state to that described by the snapshot.

restore = λ sn : SNAPSHOT • λ st : STATE • sn

Merge The merge operation takes a delta as input and returns a
transformation that appends this delta to the input state.

merge = λ d : DELTA • λ st : STATE • st a d

5.5.4 Parser Invocation Semantics

We now look at how the transformation returned by the call operation
can be derived from the execution trace returned by a parser. Recall that
the call operation’s signature is PARSER→ TRANSFORM .

We start by defining two helper functions. composeTwo maps sequences
of transformations of length n ≥ 2 to a sequence of length n − 1 similar
to the input sequence, but where the first two items have been replaced
by their composition (s 1 and s 2 (function calls!) access the first two
items of s while o

9 is the relational composition operator). reduceN takes a
natural n and a sequence of transformations and returns the composition
of its n first items, or the identity transformation if n = 0. This is
achieved by iteratively running the sequence through composeTwo, using
the Z built-in iter operator.

composeTwo = λ s : seqTRANSFORM •
〈s 1 o

9 s 2〉a tail (tail s)
reduceN = λn : N • λ s : seqTRANSFORM •

if (n = 0) then idSTATE
else iter (n − 1) composeTwo s 1

With this in place, we define the result of call as the composition of all
transformations within the call’s execution trace, assuming the parser in-
vocation is successful. Otherwise, the identity transformation is returned.
The hash sign (#) is an operator returning the cardinality of a set.

call = λ p : PARSER • λ st : STATE •
if (result st p = success)

then reduceN (#p st) (p st) st
else st
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5.6 Implementation
The preceding sections should have given you a good understanding of
the theory behind our principled state handling strategy. This section
explains how we actually deploy this theory in practice.

We start by a brief explanation of the transition from theory to practice
(Section 5.6.1). We then show how our primitive state manipulation
operations can be translated to implementation concepts (Section 5.6.2).
We also address some operationalization and usability concerns (Sec-
tion 5.6.3). We give concrete examples of both context-sensitive parsing
and the use of state manipulation operations to make existing parser
compatible with context-sensitivity (Section 5.6.4). Finally, we discuss
possible alternative implementation (Section 5.6.5).

5.6.1 From Theory to Practice

In the formalization (Section 5.5), the state is represented as a sequence
of changes. You will also recall that a parser receives a state, then based
on it computes a sequence of transformations (state transitions), which
corresponds to the primitive operations (Section 5.5.3) it calls during its
invocation. The result of calling a parser is the composition of all these
transformations, i.e., collapsing all the consecutive state transitions into
one.

What we do not formalize, however, is how a parser determines which
operations it executes. This is by design: our system’s primary sell-
ing point is that it can be extended with new parsers, as long as this
implementation stays within the boundaries of the system’s rules.

Something that can be said about the invocation of a parser, however,
is that a parser will need to apply the transformation returned by each
of its operations on the state, yielding a new state. It needs to do this
so that it may determine what the next operations are — if the parser’s
implementation is context-sensitive; or in order to pass the state to a
sub-parser invocation (which in turn, needs it for the same reasons).

How does all this translate in Autumn? Clearly it is not practical to
represent the state as a sequence of primitive changes — assuming we
want to consult the state to make parsing decisions. In Autumn, the state
is simply encoded as regular program state (i.e., part of the program’s
object graph — the value of certain fields). In this explanation we will
stick with “state” to refer to the parse state — the state that can be
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modified and read by parse, and that we may also call context.11

One issue here is that the program state is unique (there is only one
copy of it), yet parsers must sometime execute speculatively — leading
to backtracking. This is not an issue in the formalization, because the
program state is reified as a single immutable value (a list of changes).
Changes to the state are represented by transformations (state transi-
tions) returned by primitive operations. We cannot adopt that mode of
operation in Autumn, as it would run counter to context transparency
(Section 5.3).

A second difficulty is that having a single copy of the state does not make
it possible to implement snapshots, which are further required for the
diff, restore and merge primitive operations. In fact, snapshot and merge
can be seen as a way for parsers to perform backtracking manually, even
in cases where backtracking would not naturally occur — for instance,
they can be used to undo the state changes incurred by a successful
parser invocation. This is for instance the case in longest-match parser
presented in Section 5.6.4.

To enable backtracking, snapshotting and diffing, we thus need to rep-
resent the context as a series of changes from which the program state
representation can be re-created. We already hinted at the solution
earlier: each change will be associated with an equivalent reverse change:
an undo action. These pairs are kept in a stack-like data structure named
Log, which is held within the Parse instance. The log is kept in sync
with the program state: every change pushed to the log is immediately
applied onto the program state.

We already said that parsers must actually apply transformations to the
state in order to execute, and that they cannot return transformations as
that would break context transparency. Instead, parsers push changes to
the log directly. In the formalization, we define a parser as a function from
its input state to a sequence of transformations, which we said correspond
to its execution trace. In practice, we do not want the execution of a
parser to return a description of what it would do, we want the parser to
actually do it.

11Of course, not all program state is parse state. For instance, the Autumn framework
has its own state, and is likely to be used in a program that has other functionalities
than parsing.
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Figure 5.1: Illustration of how two applyChange and one restore operation
affect the log data structure and the program state.

In fact, returning the execution trace was a formalization trick that
allowed us to avoid encoding backtracking explicitly into the formalism:
transformations that occur during the execution of failed parsers ulti-
mately disappear — as there is no state mutation, nothing needs to be
undone. In the implementation however, parsers do mutate the state,
hence to enable backtracking it must be possible to undo state changes.
This is why every change is assorted with an undo action.

Figure 5.1 provides a visual illustration of how three operations affect
the log data structure and the program state. Each row above one of
the numbers represents a side effect12 made of both a change and the
corresponding undo action. During the first operation (1), a side effect
(bolded) is pushed onto the log along with its corresponding undo action.
The change is immediately applied to the program state to yield STATE1.
The second operation (2) depicts the same process for a second side effect,
taking the program state to STATE2. Finally, the third operation (3) is
a restore operation, causing us to backtrack over the second side effect.
Therefore, we apply its undo action in order to move the program state
back to STATE1. The side effect is grayed because it will be popped
from the stack after the undo action is applied.

The first listing in Figure 5.2 shows how a parser might enact a change
to the context. We access the Log instance via parse.log and call the

12The term side effect roughly corresponds to a “change” in the formalization, but
in the context of the implementation, we use to refer specifically to the pair made
by both a change function and its corresponding undo function. Using the term
side effect emphasizes the stateful nature of the changes and their peculiar status
with regard to usual parser semantics (which can be formalized in a functional way
— though the implementation is not functional), requiring them to be managed
specially.
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1 public class MyParser extends Parser {

2 // ...

3 @Override protected doparse (Parse parse) {

4 // ...

5 parse.log.apply(() -> {

6 counter_state.data(parse).x += 1;

7 return () -> counter_state.data(parse).x -= 1;

8 });

9 }

10 }

1 parse.log.apply(() -> {

2 boolean removed = set_state.data(parse).remove(some_item);

3 return () -> if (removed) set_state.data(parse).add(some_item);

4 });

Figure 5.2: Example of how a parser can push a reversible state change
to the log. The second listing shows a variant where the undo action
captures data from the change.

apply method on it. This method takes a parameter of type SideEffect.
A SideEffect is a function that returns another function — namely the
undo function — and should apply changes to the program state.

The apply method immediately runs the SideEffect function, collecting
the undo function, and saving both the original function and the undo
function as a SideEffect.Applied in the log.13

The counter_state.data(parse) code fragment is a pattern that lets us
access data stored in the Parse object — which avoids storing context
in parsers themselves, which in turns lets use reuse parsers in multiple
concurrent parses. We will cover its implementation in more detail in
Section 5.6.3.

This example is then very simple: the change accesses a plain Java object
that has an x integer field, and increments it by 1, while the reverse
change naturally decrements it by 1.

The setup may seem peculiar: why not provide the regular change and

13Saving the original SideEffect function is necessary in order to perform diff and
merge actions.
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Operation Encoding

applyChange
parse.log.apply(() -> {

a_function(a_state.data(parse));

return () ->

an_undo_function(a_state.data(parse));

});

call some_parser.parse(parse)

snapshot int pos0 = parse.pos;

int log0 = parse.log.size();

restore parse.pos = pos0;

parse.log.rollback(log0);

diff List<SideEffect> delta =

parse.log.delta(log0);

merge parse.log.apply(delta);

Table 5.1: List of our primitive state manipulation operations, along with
an example of their usual code encoding in Autumn.

the reverse change separately? It is because the nature of the change may
depend on the state at the time when the change is applied. Therefore the
reverse change may need to capture part of the state. This is illustrated
in the second listing of Figure 5.2: the change attempts to remove a
given item from a set. In this case, the undo action captures whether the
removal was successful (the removed boolean), as well as the item to add
if that is the case (some_item).

As you may have guessed, the Log#apply method corresponds to our
applyChange primitive operation. The next section will deal with how
we can express the other primitive operations in terms of the log.

5.6.2 Primitive Operations and the Log

The goal of this section is to further explain how the primitive operations
from Section 5.5.3 map to implementation concepts. A summary of how
these operations are encoded into Autumn code is also shown in Table 5.1.

applyChange and call

As we saw in the last section, the applyChange primitive operation
corresponds to the Log#apply method, which pushes an applied side
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effect (a pair of a state-mutating function with its corresponding undo
function) onto our Log data structure.

The call primitive operation is also simple: it simply maps to parser
invocation in the implementation. The invoked parser will then interact
with the Log instance on its own. The implementation does however have
to take care of backtracking — as a failed parser should leave the log
unchanged (cf. Section 5.5.4). This is actually implemented using the
snapshot and restore operations.

snapshot and restore

The snapshot and restore operations are more involved. It should first
be made clear that, in practice, we’re not interested in keeping snapshots
around forever.14 In fact, we’re only interested to use them in a way that
enables backtracking, whether the automatic kind, or the kind that is
forced by a parser. As such, the fundamental restriction is that operations
that make use of a snapshot ( restore or diff) should occur during the
execution of the same parser that ran the snapshot operation which created
the snapshot. It is the responsibility of the user to enforce this.

Given this restriction, it then suffices to take the size of the log to create
a snapshot. To restore this “snapshot”, it suffices to pop items off the log
and apply their undo action until the size is restored to the saved one.
The snapshot and restore capabilities are implemented as the Log#size()

and Log#rollback(int target_size) methods.

We note that restore is the only operation that is able to shrink the size
of log,15 and that we are not at risk to shrink the log further than its
snapshot size — even if other restore operations are nested in between
snapshot and restore, they will not be able to, given the restriction
outlined above.

As for how backtracking is implemented, it is very simple. Recall from
Section 3.2 that we invoke a parser by calling its parse method, which
in turns calls the doparse method implemented by the user. We said
earlier that parse took care of some bookkeeping. One of the things it
does is create a snapshot, and restore it after calling doparse in case it

14A fact admittedly not encoded in the formalization, but see shortly for how to
reclaim this capability.

15Even parser invocations cannot, given the restriction outlined above on snapshot
usage.
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fails (returns false).

If we really needed to lift the restrictions on snapshots lifetime, we could
define a snapshot as the whole content of the log. Then one could
perform a restore by first undoing the entirety of the current log and
then reapplying all the changes (side effects) in the saved log. This could
further be optimized by avoiding to undo the changes that appear in a
shared prefix between the two logs. In fact, this is perfectly doable in our
implementation (even for the parser author), it just is not necessary for
any use case that we encountered so far — and it is vastly less efficient
than the restricted log size approach.

diff and merge

diff takes a snapshot and a state and returns a delta between the two. The
formalization defines all three of these things as sequences of changes. In
the implementation, the state will always be the current state represented
by the current state of the log, while the snapshot is an integer inferior
or equal to the current size of the log (recall the above restriction: the
snapshot operation must have occured during the same parser invocation
as the diff ). Given that, a delta is simply the slice of SideEffect instances
(we do not need the undo actions) that sits on top of the log above the
snapshot size. Such a delta can be obtained via the Log#delta(int

snapshot_size) method.

Unlike a snapshot, a delta may freely escape the purview of the parser that
created it. This is notably the case for memoization (cf. Section 6.1.4),
where the delta is part of the information memoized about a parser
invocation, and is consequently entered into a memo table. Memoization
is a recurrent use of diff and merge, including more local forms of memo-
izations — such as the one used in our left_recursive combinator (cf.
Section 4.5.2), the optimization built into right_fold (cf. Section 4.8.3)
or the longest combinator (cf. Section 5.6.4).

Regarding merge, things are very simple: it simply consists of applying
the listed SideEffect onto the log. This can be achieve via the method
Log#apply(List<SideEffect> delta). We note that it is not necessary
to merge a delta onto the same log that was used to create it (if that
were the case, it would yield a poor form of memoization). A delta may
even be merged multiple times (though we do not have a use-case where
that is actually needed).
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5.6.3 Operationalization and Usability Concerns

This section gives some more details on a couple of small operationaliza-
tion and usability concerns relevant to the implementation, namely (1)
maintaining per-parse state, (2) reversible data structures, (3) the possi-
bility of nested side effects, (4) the special status of the input position
as parse state, and (5) the possibility of memoization in the presence of
context.

Per-Parse State

You may recall from Figure 5.2 that we used the some_state.data(parse)
construction to access a Java object that was part of our context. We
now explain what this means.

The problem this solves is fairly simple: we want the context (the parse
state) to be linked to a particular parse (i.e., a Parse instance) — this
enables parsers to be freely shared between multiple concurrent parses.
Yet, the context has to be accessed from the parsers, which needs to
have a way to reference the correct state. We also want to avoid conflicts
between independently developed parsers and associated data objects.

We resolve this conundrum by letting parsers manipulate a ParseState-

<Data> object, where Data is the type of the context object (it could be
anything). To construct a ParseState one needs to supply two things:
a key that will uniquely identify the parse state, and a function that
creates the initial instance of Data.

So by filling in the code from Figure 5.2, we get the code in Figure 5.3.
The key is MyParser.class — a good choice because it will never clash
with another key used by another parser, and it signals clearly that
the same IntHolder instance is going to be used by all the instances of
MyParser. Another common choice is to use the instance itself (this) as
key — in the case we need one instance of the data object per parser
instance.

Internally, the Parse instance is equipped with a map from key to objects.
Calling some_state.data(parse) looks up the key in that map and re-
turns the associated item. If the key is absent, the data object is created
using the supplied constructor and entered into the map.

This is further optimized by caching one instance of the data object (i.e.,
the instance for a single parse) in the ParseState instance — ensuring
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1 public class MyParser extends Parser

2 {

3 static class IntHolder {

4 public int x;

5 }

6
7 private ParseState<IntHolder> some_state

8 = new ParseState(MyParser.class, IntHolder::new);

9
10 // ...

11
12 @Override protected doparse (Parse parse) {

13 // ...

14 parse.log.apply(() -> {

15 some_state.data(parse).x += 1;

16 return () -> some_state.data(parse).x -= 1;

17 });

18 }

19 }

Figure 5.3: An expansion of Figure 5.2 showing the setup used to get
per-parse context.

that if only a single parse is ongoing at any one time, we will not incur
the overhead of a hash table lookup at all.

Reversible Data Structures

The side effect mechanism is relatively lightweight. By only requiring
that undo actions be provided for changes that are actually made, we
limit the overhead placed on the user.

Nevertheless, it would be even easier to get access to data structures
which automatically push their changes onto the log along with the
appropriate undo action — hence hiding the side effect mechanism from
the user.

We have actually already seen uses of one such structure: the value stack
used to build abstract syntax trees (Section 3.3). Indeed, way back in
Section 3.3.2 we introduced the idea that the value stack is a form of
parse state. It is maybe a stretch to call it context, because parsing
decisions are normally not made based on AST nodes (though nothing
precludes this in Autumn). However, changes to the value stack are a
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side effect, and therefore need to be undone upon backtracking.

The value stack actually has type SideEffectingArrayStack, which is
also made available to users. This is precisely a reversible data structure
that automatically updates the log whenever it is updated.

It would be fairly easy to write more of these data structures. However, it
is not quite clear how beneficial this endeavour would be when a side effect
does not consist of a single change to a single of these data structures.
For instance, undoing multiple such changes at once might be much more
effective using an undo action.

Nested Side Effects

One may wonder what occurs when the log is modified within a side effect.
The good news is that this actually works by construction. The side effect
will be ran before it is added to the stack — this is necessary because it
will return the undo action needed to construct the SideEffect.Applied

instance pushed onto the log. Any modification to the log within the
side effect, will thus be applied onto the log first, and consequently be
undone after the outer side effect.

This enables relatively easy side effect composition, should it be required.
A good example is using the reversible data structures (introduced in the
last section) inside a side effect.

On the other hand, modifying the log within an undo action is unsound
and should not be done.

The Input Position as Parse State

As far as our formalization goes, the input position should just be a
regular instance of parse state. In practice, our implementation always
manipulates the input position separately when it comes to making
snapshots, diffs, restoring and merging.

The reason is quite mundane: the input position is manipulated a lot:
the majority of parsers update it. If each of these manipulations yielded
the creation of multiple objects and the modification of the log, it would
slow down the parse a great deal.

In addition, it makes sense to give the input position a special status. For
simple grammars and custom parsers, the user does not have to concern
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himself with the context (beyond the AST-building logic — which is
cleanly encapsulated via a reversible data structure). On the other hand,
the input position is a key notion.

Memoization in Context

While a full explanation of Autumn’s memoization facilities must wait
for Section 6.1.4, one may wonder how memoization may work in the
presence of context-sensitivity. Indeed, memoization relies on the single
parse rule to ensure that the invocation of a parser at a given position
always yields the same result. Context-sensitivity voids this guarantee
by making it possible to have multiple invocations with different context
at the same position.

Autumn’s solution to this issue is to outfit each memoizing parser that
needs to worry about context with a context extractor : a function that
returns an object encapsulating the relevant context at the time of
invocation. This context object is then memoized along with the result
of the invocation. When we try to use a memoized result, we re-extract
a new context object from the current context, and compare it to the
memoized one.

Using the context object has one unfortunate consequence however: it
breaks our context transparency property (Section 5.3). If the grammar
is refactored, such that a parser reachable through a memoized parser
depends on context that is not captured, one risks recalling a wrong
memoized result. As such, memoization should only be applied as a
last optimization step when writing a grammar, and should be applied
on low-level parsers (i.e., parsers through which few other parsers are
reachable) whenever possible. As we will see in Section 6.1, pervasive
memoization is not necessary (or even detrimental) for good performance
and frequently-invoked parsers logically tend to be low-level parsers.

As we will see, Autumn allows specifying different interchangeable mem-
oization strategies — one can change the memoization strategy without
changing the rest of the grammar. Given the existence of a context object,
multiple strategies are conceivable. We can memoize all (input position,
context object) pairs we encounter for a given parser, or just memoize the
last context object for a given input position, while making certain we do
validate the memoized context object. The two memoization strategies
built into Autumn do produce distinct entries when encountering different
contexts at the same input position for a given parser.
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5.6.4 Examples

We now give a couple of examples of how the context-sensitive facilities
Autumn provides through its side effect log are used in practice. We first
show how to use them to actually define some context-sensitive features,
and we then turn to usage within more general parser combinators.

A Simple XML Language

We will first look at a full full-blown example of context-sensitive parsing
implemented in Autumn. The listing below shows a grammar and all
relevant associated code necessary to define a simple XML language.

Our language is made up of paired opening and closing tags, e.g., <mytag>
and </mytag>. A tag name can be any string of alphanumeric characters
starting with a letter. Inside a tag there can be other tags, as well as
arbitrary text that does not contain the < character.

Our language is of course simplistic. Compared to the real XML language
it does not contain attributes, any kind of comment, or character escapes
— to cite only a few things. It is nevertheless sufficient to demonstrate
a context-sensitive parsing capability, namely that it ensures that every
opening tag is paired with the corresponding closing tag and sets an
appropriate error message if that is not the case.

Let’s have a look at the listing, after which we will give more details.

1 // ... (imports from norswap.autumn and java.util)

2
3 public final class SimpleXML extends DSL

4 {

5 public final class Tag {

6 public final List<?> contents;

7 public Tag (List<?> contents) {

8 this.contents = contents;

9 }

10 }

11
12 private final ParseState<ArrayDeque<String>> tag_stack

13 = new ParseState<>(SimpleXML.class, ArrayDeque::new);

14
15 public rule identifier =

16 seq(alpha, alphanum.at_least(0));

17
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18 public rule open_identifier =

19 identifier.collect()

20 .action_with_string((p, xs, str) -> p.log.apply(() -> {

21 tag_stack.data(p).push(str);

22 return () -> tag_stack.data(p).pop();

23 }));

24
25 public rule close_identifier =

26 rule(new CloseTag(identifier.get()));

27
28 public final class CloseTag extends AbstractWrapper

29 {

30 public CloseTag (Parser identifier) {

31 super("close_tag", identifier);

32 }

33
34 @Override protected boolean doparse (Parse parse)

35 {

36 int pos0 = parse.pos;

37 if (!child.parse(parse))

38 return false;

39
40 String close_tag =

41 parse.string.substring(pos0, parse.pos);

42 ArrayDeque<String> tstack = tag_stack.data(parse);

43 String open_tag = tstack.peek();

44
45 if (open_tag == null) {

46 parse.set_error_message(

47 "Closing tag without matching opening tag: </"

48 + close_tag + ">");

49 return false;

50 }

51
52 if (!close_tag.equals(open_tag)) {

53 parse.set_error_message(

54 "Mismatched opening and closing tag: <"

55 + open_tag + "> and </" + close_tag + ">");

56 return false;

57 }

58
59 tstack.pop();

60 return true;

61 }

62 }

63
64 public rule open_tag = seq("<", open_identifier, ">");

65 public rule close_tag = seq("</", close_identifier, ">");
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66
67 public rule text =

68 cpred(c -> c != ’<’).at_least(1)

69 .collect().action_with_string((p, xs, str) -> {

70 p.stack.push(

71 Arrays.stream(str.split("\n"))

72 .map(String::trim)

73 .collect(Collectors.joining("\n")));

74 });

75
76 public rule contents =

77 choice(lazy(() -> this.tag), text).at_least(0);

78
79 public rule tag =

80 seq(open_tag, contents, close_tag)

81 .push(xs -> new Tag(list(xs)));

82 }

Our AST for this language will consist of two types of objects: instances
of Tag and plain String objects. Tags hold a list of their children, which
can be other tags or strings (in the order in which they appear in the
XML source).

The whole context of the grammar is held in a single ParseState instance
called tag_stack. Since it is the only parse state being used, we use
SimpleXML.class as a key.

You should be able to understand many of the grammar rules from the
explanation we gave in Chapter 3, but there are a few novelties that we
will detail. All the context-sensitive logic is concentrated in the open_-

identifier rule as well as in the CloseTag class. We will go over these
in details shortly, but we first explain non-context-sensitive peculiarities.

In rule text, cpred is a character predicate that consumes a character
that satisfies the given predicate (here, the character should be different
from <. We could also have expressed the same thing by using the parser
seq(character(’c’).not(), any). We then use the action_with_string
combinator, which gives us access to the matched text as the parameter
str. The action creates a copy of the string without the leading and
trailing whitespace of every line, and pushes it onto the value stack.

alpha and alphanum are built-in rules, respectively matching alphabetic
and alphanumeric characters. You will notice we also forego using the
special built-in rule ws (Section 3.1.2) in this grammar: all allowed
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whitespace will be parsed as part of the text rule.

Regarding context-sensitivity, the first thing you will notice is the asym-
metry between our two context-aware rules. open_identifier is not
context-sensitive per se, it just writes the context — therefore we access
the context (the tag stack) within the action passed to the action_with_-
string combinator.16 close_identifier, on the other hand, needs to
actually read the context to make a parsing decisions — that needs to
happen within a parser’s doparse implementation.

Regarding the logic, open_identifier simply retrieves the matched tag
name (via the str parameter) and pushes it onto the tag stack. The undo
action is simply to pop the name off the stack.17 The CloseTag class
extends AbstractWrapper which is an abstract class offered by Autumn
to ease the definition18 of parsers that can match the same thing as their
single child, but are able to add additional restrictions — in this case,
context-sensitive ones. The class compares the closing tag name to the
opening tag name recorded on top of the stack, and sets an appropriate
error message in case it encounters an orphaned or mismatched closing tag
(the error message mechanism is explained in Section 6.4.2). Otherwise,
it succeeds and pops the opening tag off the stack.

Finally, we note that Autumn also supplies a ContextPredicate parser
class that takes a function from Parse to boolean as argument. These
parsers can be built with the context(...) method and used to imple-
ment simple context checks. We could slightly shorten our example by
using instead of defining the CloseTag class: we just need to push the
tag onto the value stack, then access it from the context predicate and
verify it is equal to the top of the tag stack — like we do in doparse.
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1 @Override public boolean doparse (Parse parse)

2 {

3 int pos0 = parse.pos;

4 int log0 = parse.log.size();

5
6 int max_pos = pos0;

7 List<SideEffect> delta = null;

8
9 for (Parser child: children)

10 {

11 boolean success = child.parse(parse);

12 if (success) {

13 if (parse.pos > max_pos) {

14 max_pos = parse.pos;

15 delta = parse.log.delta(log0);

16 }

17
18 parse.pos = pos0;

19 parse.log.rollback(log0);

20 }

21 }

22
23 if (delta == null)

24 return false;

25
26 parse.pos = max_pos;

27 parse.log.apply(delta);

28 return true;

29 }

Figure 5.4: The implementation of the doparse method for Autumn’s
built-in Longest parser.
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Longest Parser

Let’s move onto an example of using the snapshot, restore, diff and merge
operations in a parser. Our Longest parser is a modified choice parser
that tries all of its children on the input and matches the same thing
as the one that matches the most input. Accordingly, only the state
modifications made by this longest-matching parser invocation should be
borne out.

Figure 5.4 shows how the Longest parser’s doparse method is imple-
mented in Autumn.19 As explained earlier, our snapshot is simply
the size of the log assigned to log0. We try parsing each parser in
turn, then reset the parse to its previous state by resetting the input
position to its initial value20 and performing a restore operation via
parse.log.rollback(log0). If the parser is the longest-matching so far,
we also save the extent of the match as well as its side effect through
a diff operation implemented by parse.log.delta(log0). Finally, we
merge the side effects of the longest-matching parser invocation through
parse.log.apply(delta).

Similar mechanisms are deployed in other parsers built into Autumn.
This is notably the case of the Memo parser implementing memoization,
which we describe in Section 6.1.4.

5.6.5 Alternatives

The implementation we present above is not the only possible way to
operationalize the principles of principled stateful parsing.

16This combinator is somewhat analogous to push (cf. Section 3.3.1): it collects the
objects pushed on the value stack by the wrapping parser and passes them to a
user-supplied function. Compared to push, the function does not have a return value
that will be automatically pushed onto the stack, and it takes an additional str
parameter that holds the string matched by the wrapped parser.

17We could have used our SideEffectingArrayStack from last section here, but we
chose to be a bit more explicit in this introductory example.

18By providing implementations of some of the Parser abstract methods and adequate
default behaviours for the built-in parser visitors of Section 6.5.5. Abstract parsers
are covered in Section 6.5.7.

19The full code can be found online in the Autumn source code repository [56], at
path src/norswap/autumn/parsers/Longest.java.

20We covered the special status of the input position at the end of Section 5.6.3.
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Indeed, in our 2016 paper [58], we outlined a completely different method
of implementation. The key difference in that version is that snapshots
make actual copies of the context. Of course, that is relatively costly in
general, so we made sure to encourage the use of efficient immutable data
structures.

Immutable data structures can be copied by reference. On the other
hand, the costs shift to “mutations” of the data structure: instead of
mutating the structure in place, a fresh modified copy needs to be created,
which is expensive. To counteract these costs, efficient immutable data
structures employ structural sharing to avoid copying data as much as
possible — the canonical example being the venerable singly linked list.
The old version of Autumn supplied with the paper also provided a
Hash Array Map Trie (HAMT) [7] based on the recent high-performance
improvements proposed by Steindorfer and Vinju [88].

In that old version, we required context to be held in classes implementing
an interface specifying how the primitive operations of Section 5.5.3 should
work on the given class. The users were thus responsible for creating
their own delta objects and snapshots, as well as handling the merge and
restore logic. Quite obviously, this had a whole lot more overhead than
the current approach, both conceptually and in terms of implementation
effort. We did supply built-in data structures to alleviate some of that
effort (e.g., the aforementioned HAMT implementation). Interestingly,
note that this interface can be implemented in terms of a log like that
present in the newer Autumn versions.

Doubtless, there are even more ways to implement a system that imple-
ments our primitive operations and satisfy our requirements.

A particularly interesting avenue of inquiry is that of reversible compu-
tation: instead of specifying undo actions manually, the system would
be able to automatically determine the necessary step to undo a change.
This method is notably used by the Colm [92] language — which we
discussed in Section 5.2.1. Colm is its own language and runs on top of
a custom virtual machine, which is able to record state changes as they
occur and build up a procedure to reverse them.

This approach would be difficult to emulate in Autumn, as it is im-
plemented as an embedded Java domain specific language (DSL). We
could get something similar by restricting state changes to reversible data
structures — though there is no way of checking that the user actually
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respects this restriction,21 in the same way that we cannot verify if the
user-supplied undo actions actually reverse the changes that were made.

5.7 Conclusion
In this chapter, we proposed an approach to tackle the problem of
context-sensitive parsing. Our solution, unlike existing ones, possesses the
property of context transparency: grammatical constructs are unaware of
the context shared between their ancestors and their descendants, making
it easier to write, evolve and compose context-sensitive grammars.

We proceeded in two parts. First, we allowed parsers to manipulate a
mutable data store, so as to enable context-sensitivity through recall.
Second, we required parsers to behave transactionally: a parser must
either succeed, or fail and leave the state unaltered. This transactional
discipline, which we call principled stateful parsing, prevents parsing
mechanisms such as backtracking and memoization to break the guarantee
of context transparency.

To enforce the principled stateful parsing discipline, we supplied formally
specified state manipulation operations: applyChange applies a change
to the state; call corresponds to a parser invocation, which will induce
further operations; snapshot creates a “snapshot” of the state, which can
be restored using the restore operation; diff enables creating a “delta”
(a patch) between a snapshot and the current state, which can be (re-
)applied later using the merge operation.

We implemented the approach in our Autumn parsing tool by keeping
a log of reversible changes to the parsing state, and showed how it can
be used in practice to define the syntax of context-sensitive language
features, as well as how the approach can be made compatible with
existing facilities such as memoization and longest-match parsing. We
underline the flexibility enabled by the approach, while maintaining the
amount of boilerplate and conceptual overhead low.

21Besides full-blown static source code analysis, which would defeat some of the
advantages of using an embedded DSL.





Chapter 6

Engineering Aspects

In Chapter 1 we emphasized our wish to develop a pragmatic parsing
approach, and to demonstrate this approach in a practical tool — our
Autumn parsing framework. We positioned our approach as a trade-off
between the simplicity and declarativeness of grammarware on the one
hand, and the flexibility of ad-hoc parsing on the other hand.

So far, we have mostly focused on issues of expressiveness, and the
solutions afforded by the ability to write custom parsers. Chapter 3
introduced these capabilities along with other basic concepts of Au-
tumn. Chapter 4 used them to implement different left-recursion and
left-associativity handling strategies, proving the power of the mechanism
and that the approach does not need to be beholden to the limitations
of the PEG formalism. Chapter 5 extends our approach with a new
capability: free-floating context and means to manipulate it safely and
in a well-circumscribed way (i.e., context-transparently). It also showed
how to use this capability in practice.

While writing custom parsers is the key element of our approach and the
bedrock of our claim to flexibility, it is not by itself sufficient to satisfy
the ambitious goals we have set in Chapter 1. Nor do they all relate to
expressiveness.

Therefore, this chapter is concerned with aspects of parsing that go
beyond expressiveness, and in particular focuses on aspects of a less
algorithmic nature than those discussed before. We will still discuss a
number of custom parsers, but with the goal of using them towards more

161
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pragmatic endeavours, such as improving performance and bettering the
user experience.

We have gathered together a number of concerns under the umbrella term
of “engineering aspects”, to emphasize that they relate to implementation
and code architecture — though that is by no means the extent to which
these concerns matter. These aspects are diverse:

• Section 6.1 discusses the ever-important performance aspect. We
recapitulate previous comments on performance, present Autumn’s
support for memoization, and make a few observations on the
nature of top-down combinator performance.

• Section 6.2 showcases performance measurements made with Au-
tumn and shows how it compares to some state-of-the-art parsing
tools.

• Section 6.3 shows how a scannerless combinator framework like
Autumn can be used to simulate lexical analysis — a practice that
simplifies grammars, helps a lot with performance and can improve
error reporting.

• Section 6.4 discusses error reporting and recovery, outlining Au-
tumn’s capabilities and investigating possible advanced error-re-
porting and error-recovery strategies that can be implemented using
Autumn’s existing features.

• Section 6.5 discusses Autumn’s support for grammar reification. In
particular, we present our architecture for grammar traversal as
well as creating operations that can be specialized for every kind of
parser, tackling a modified form of the expression problem along
the way. These capabilities are used to perform key static grammar
analyses in Autumn, as well as support grammar composition.

• Section 6.6 presents Autumn’s support for debugging and tracing a
parse’s execution, two capabilities which are supremely useful in
the process of writing correct and efficient grammars/parsers.

• Section 6.7 discusses the possibility of grammar composition in
Autumn as well as some related challenges.

These aspects are not to be taken lightly if one wishes to produce a useful
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parsing tool — and it is consequently important that the underlying
parsing approach should be compatible with them.

Unfortunately, some of these aspects, though they have obviously been
“researched” (after all, many parsing tools have some of these capabilities)
are under-discussed in the academic literature (in fact, in the literature
in general). We can ourselves attest that finding quality discussions of
the implementation side of these aspects is arduous when it is possible
at all — all too often, the only point of reference is source code. We
therefore consider our investigations of these aspects in the context
of Autumn’s implementation, and the present discussion of them, as
important contributions of this thesis.

6.1 Performance Considerations

In general, simple PEG parsing (cf. Section 2.4.4) has worst-case expo-
nential time complexity, while packrat parsing has linear time complexity,
but superior (linear) memory requirements (cf. Section 2.4.5). Just
like before, we use “PEG” here as an umbrella term for both classical
PEG parsing and top-down combinator parsing with user-defined custom
parsers.1

We’ve argued before that these complexities may be less relevant than they
seem, as most programming language grammars are nearly deterministic
(cf. shaded box on page page 32). A relatively small lookahead is
generally enough to determine the right rule to apply, and the amount of
backtracking should be small even with simple PEG parsing. Section 6.1.1
tries to give some intuition as to why this is the case. But because a
grammar is not exponential does not mean it cannot be inefficient. This
section explores the nature of these inefficiencies, and potential remedies.

Section 6.1.3 looks at a common grammatical idiom that causes patho-
logical performance for non-memoizing parsers. Section 6.1.3 explains
why we can’t just use packrat parsing to memoize the whole grammar
and forget about performance. Nevertheless, targeted memoization can
still be useful, and Section 6.1.4 presents Autumn’s memoization support.
All topics from this section will be further illustrated in the performance

1In principle, one cannot put any theoretical bound on combinator parsing, as user-
defined parsers can be arbitrarily inefficient. We obviously assume common sense in
our discussion (as there are no good reasons to write exponential (or worse) parsers),
and will be careful to point out potential performance pitfalls.
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comparison of Section 6.2.

6.1.1 The Conspicuous Absence of Exponentiality

We’d like to emphasize just how hard it is for PEG to actually devolve
into exponential behaviour in practice.

It’s hard to even come up with an exponential PEG grammar. An
example would be S → aSb | aSa | ε. This grammar matches strings
whose first half is made up entirely of a’s, while its second half can be a
mix a’s and b’s.

To get exponential behaviour in PEG, the pattern is that there should be
a rule that recursively calls itself multiple time at a further input position.
If the amount of input the rule can match is unbounded, worst-case
exponential behaviour ensues. This is the case for our rule S above: when
called at input position x , it might end up being called at position x + 1
twice — as indeed it will for every position, when the input is a string
consisting of only a’s.

More pragmatically — as the above rule is unlikely to be written in
practice — we personally never encountered a single instance of exponen-
tial behaviour, neither in our grammars or that of others. Becket and
Somogyi also note “exponential behaviour just doesn’t seem to happen
in practice anyway” [8].

6.1.2 Inefficient Idioms in Simple PEG Parsing

While exponential run-times are inexistent in practice, language de-
terminism does not necessarily preclude “bad” (but non-exponential)
backtracking idioms in the grammar.

In particular, we managed to find one idiom that showcases such ineffi-
ciencies. Worryingly, this idiom is in widespread use for CFG grammars,
and as such is often used in PEG grammars too. The idiom is a way
to encode precedence in binary expressions using different rule names,
shown in Figure 6.1.

Grammars of the kind shown in Figure 6.1 are parsed inefficiently by
non-memoizing parsers. Consider a grammar for infix binary expressions
with L levels of precedence and P operators per level of precedence. In
our example, L = P = 2. This grammar will parse a simple number (e.g.,
’42’) in O((P +1)L) expression invocations. In our example, S will cause
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S → P ‘+’ S | P ‘−’ S | P
P → N ‘∗’ P | N ‘/’ P | N
N → [0− 9]+

Figure 6.1: A PEG grammar for simple arithmetic expressions that
exhibits an undesirable backtracking pattern.

P to be called thrice at the same position, and for each of its invocations
P, will cause N to be called thrice as well, for a total of 9 invocations of N .
For real languages like C or Java, this adds up to thousands of invocations
to parse a simple number. The complexity is somewhat amortized for
longer expressions, but the cost remains prohibitively high.

We can also see why the behaviour isn’t exponential in the input size: it
is fixed by constants (P and L) that depend on the grammar, not on the
input size.

This should feel familiar. Indeed, the grammar from Figure 6.1 is the same
as the right-associative layered encoding in Figure 4.2a of Section 4.2.

But the issue is also reminiscent of the performance issues with the
transparent left-recursion combinator (Section 4.5.3) and with the right-
folding combinator (Section 4.8.3). In fact, all three issues share the
same failure mode: they invoke the parser for the higher-precedence level
multiple times at the same position (once for each operator at the current
precedence level until a match is found).

The good news is that we have already established that the solution to
these performance problems is to use the expression family combinator
of Section 4.9, which does not exhibit this bad pattern.

We should also note that this is the only such pathological pattern we
ever encountered while writing PEG-style grammars, nor have we ever
seen such patterns reported elsewhere.

6.1.3 Packrat Parsing

Packrat parsing (cf. Section 2.4.5) is a technique that builds upon
the simple top-down recursive-descent PEG parsing strategy, by adding
memoization of parse results on (input position, parsing expression) pairs.
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Since packrat parsing does solve the issues outlined in the previous section,
and has a much lower (linear) time complexity bound, it is only natural
to wonder why we don’t use this technique and call it a day.

Unfortunately, it turns out that packrat parsing is, in practice, often less
efficient than simple PEG parsing. We quickly review two studies to that
effect.

Becket & Somogyi 2008

In a study done by Ralph Becket and Zoltan Somogyi [8], they found
out that — amongst different memoization strategies — memoizing all
grammar rules was always the worst possible strategy in terms of parse
time when using their grammar for the Java programming language.
When compared to the best memoization strategy found, memoizing
every rule was 300-700% slower, while memoizing nothing was only 0-30%
slower.

These results must be tempered somewhat. First, they were obtained
using a single grammar: that of Java, and a single tool: the Mecury
programming language. Mecury is a programming language based on
the logic programming paradigm (like Prolog). As such, it includes the
possibility of defining Definite Clause Grammars (DCGs), as introduced
in Section 2.1.3. The semantics of DCGs are that of CFGs, absent
left-recursion. These are basically the same semantics as PEG with the
addition of lateral backtracking (cf. Section 2.4.4). However, the authors
port a CFG for Java to the DCG formalism by inserting cut operators
after each choice alternative2 (and modifying choices wherever necessary).
This has the effect of making all choices ordered and preventing lateral
backtracking, making the difference in semantics moot.

DCG rules can also have parameters, and those have to be memoized
alongside the rule and input position. The authors note that this is costly,
but it’s unclear how much this affects the overall memoization costs. We
do note that the vast majority of rules aren’t parameterized, but by itself
this gives no information on much they are called.

In summary, the experiment is valid despite the apparent difference
in formalisms — but has still been conducted using only a single tool

2In reality, the authors use the if ... then ... else ... operator, but this op-
erator can (and usually is) defined in terms of the cut operator. The cut operator
prevents backtracking to other alternatives of a Prolog rule when encountered.
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and grammar. We have reasons to suspect the memoization overhead
might not be as bad for other tools: the fastest tool in the performance
comparison of Section 6.2 is a packrat parser generator! Nevertheless, the
benchmark will also show that for Autumn’s Java grammar, memoization
beyond the lexical layer doesn’t help performance.

Redziejowski 2008

The next study [76] does not in fact show that packrat parsing is slower
than simple PEG parsing, but hints in that direction, and helps explain
why it might be the case.

In the study, Redziejowski demonstrates a PEG parser generator — called
Mouse — that does not perform memoization. The author does not record
actual (temporal) performance, but instead the number of function calls
made during a parse (the number of such calls being proportional to the
number of parsing expression invocations).

Redziejowski then goes on to show that on his corpus (about 10.000
source files comprising the J2SE 5.0 JDK source code), only 16.1% of all
function calls are repeated, i.e., called at the same input position than a
previous call of the same function. This number further drops to 10%
after he modifies the generated parser to perform a hash-table lookup on
matched identifiers to see if they are not equivalent to reserved keywords,
hence avoiding a large number of (repeated) function calls. This change
also reduces the total number of function calls by about 20%.

In a further experiment, he shows that memoizing the last invocation
of each function reduces the number of repeated calls to only 3.3%, and
memoizing the two last invocations to 1.1%.

From the author’s numbers we note that, interestingly, the total number
of calls drops more or less proportionally to the reduction in repeated
calls. So when the percentage of repeated calls drops from 16.1% to 3.3%
(a 12.8% reduction), the total number of calls drops by 14.1%. This
shows that the memoized calls don’t tend to make too many function
calls of their own. This is perhaps not very surprising, since the author
reports that the average backtracking length is only 3.8 characters.

It is a shame that the author did not report run times, as that would
have given a sense of how the memoization overhead measured up against
the reduction in function calls. Nevertheless the result do align pretty
neatly with those of Becket & Somogyi [8] and our own (Section 6.2).
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Mouse [77] is one of the tools that we benchmarked in Section 6.2. As we
shall see, the (non-optimized) grammar distributed by Redziejowski runs
suspiciously slowly and we will speculate to the cause of this slowness in
relationship with the experiment presented in this section.

6.1.4 Memoization in Autumn

Autumn does offer the possibility of memoizing parser results, but —
given the results from the previous section — does not do so by default.
This section explains Autumn’s memoization facilities, which are built
entirely on user-available features.

In Autumn, memoization is handled by a custom parser named Memo.
This parser wraps a sub-parser whose result it will memoize. It also
needs two other things: an instance of Memoizer3 which will dictate the
memoization strategy to use, as well as to provide the storage for the
memo table; and — if the sub-parser is context-sensitive — an extractor
function to isolate the relevant part of the context, to be memoized along
with the results. We talked about the role of the extractor before in
Section 5.6.3.

The basics of memoization have been covered during our discussion of
packrat parsing in Section 2.4.5, but to summarize it briefly, we simply
memoize parse results (success, amount of input matched, generated
syntax trees) on a (input position, parser) key. Per the single-parse rule
(Section 2.4.3), these results are guaranteed to be unique. The intro-
duction of parse state and context-sensitivity changes things somewhat:
syntax trees are now a form of parse state, and all changes to the parse
state can be memoized via our diff operation (Section 5.6) Memoization
must now also discriminate on the context, using the aforementioned con-
text extractor (Section 5.6.3) — with the annoying drawback of breaking
our context-transparency property (Section 5.3).

Memoization strategies are built by implementing the Memoizer interface.
In particular, each memoizer must define how to memoize an entry (made
out of the parse results listed previously, including a delta list of side
effects) on the basis of an (input position, parser, context object) key. It
must also define how these entries can be retrieved.

Autumn comes bundled with two memoizer implementations. The first,

3Which must be wrapped in ParseState to enable safe parser reuse, as explained in
Section 5.6.3.
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MemoTable, simply memoizes every entry it is passed. This strategy is
equivalent to that employed by classical packrat parsers. The second
memoizer, MemoCache, only memoizes a bounded amount of entries, evict-
ing older entries as new entries are added. The number of entries to
be kept can be customized. In practice, it seems MemoCache is generally
superior: anecdotal evidence and common sense suggest that unless your
grammar exhibits wild backtracking, a MemoTable will mostly drive mem-
ory consumption up without much performance benefits. Finally, users
can implement their own memoizers.

In Section 5.6.3 we hinted at one possible strategy that is not implemented
in Autumn: we could remove the context object from the memoization
key, hence keeping only a single (or alternatively, a bounded amount of)
memo entries per (input position, parser) pair.

There is also another axis on which to vary your memoization strategy:
you can opt to outfit each different Memo parser with its own memoizer,
or to share the same memoizer between all parsers (or some in-between
compromise). For instance, memoizing every rule using a MemoCache of
size 1 yields Redziejowski’s memoization strategy, which we presented in
Section 6.1.3.

Regarding the DSL, memoizing a parser is as simple as affixing the
.memo() combinator — which memoizes the parser in its own MemoTable.
Multiple overloads of the combinator are also available: it’s possible to
specify an integer — in which case a MemoCache with the given size is
used instead — a context extractor, a specific memoizer to use, or any
combination of the aforementioned. Here are two simple examples:

• seq(a, b).memo(8)

• seq("</", identifier, ">")

.memo(p -> XMLContext.data(p).peek())

Autumn also offers another form of memoization in the form of lexical
analysis simulation, which is covered in Section 6.3.

6.1.5 Megamorphic Call Sites

Autumn is a parser interpreter. It doesn’t have a separate compilation or
generation step. This is convenient, but we pay a performance penalty
for it, most notably in the form of dispatch overheads at megamorphic
call sites and missed optimization opportunities.
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A megamorphic call site is a location in the code where a virtual method
is invoked that has three or more actual invocation targets (i.e., the actual
method implementation that will be called). Megamorphic call sites are
distinguished from monomorphic call sites (a single actual invocation
target) and bimorphic call sites (two actual invocation targets).

We emphasize that actual invocation targets means targets called in
practice. It doesn’t matter how many implementations a virtual method
has, if a given call site always goes to the same invocation target, then
the call site is monomorphic. The nature of a call site is determined by
the JVM’s (Java Virtual Machine) tracing JIT (just in time) compiler,
at run time. The JIT monitors the invocation targets (that’s why it is
a tracing JIT), then when enough data has been accumulated (and if
the code is “hot” — meaning invoked frequently enough), it dynamically
(re)compiles the code, taking into account the call site’s perceived nature.

A call site’s nature may change during execution. If a call site that was
exclusively used with a single invocation target suddenly starts seeing
another invocation target, its nature will change from monomorphic to
bimorphic. For this reason, all call sites that cannot be proven to be
non-virtual4 must be guarded by a type guard, a check verifying that the
method’s receiver does indeed have the type we assumed.5

When the JIT decides to compile some code, different call sites will be
handled differently with regards to optimization opportunities. Non-
virtual method calls can be inlined by the JIT without risk. In the
monomorphic and bimorphic cases, the JIT can choose to either only
inline the method lookup in the class’ virtual table (often referred to
as vtable), or to inline the implementations resulting from that lookup.
It must also include the aforementioned type guard. Inlining is never
possible for megamorphic call sites.

Unfortunately, in Autumn, megamorphic call sites are all over the place:
each time a parser invokes one of its sub-parsers by calling its parse

method, that is most likely a megamorphic call site: most common
combinators will be used with more than two different kinds of parsers

4Non-virtual call sites include calls to static methods and methods marked final, as
well as calls to methods considered effectively final because they are never overriden
in any loaded class.

5And if not, causes the compiled code to be discarded in favor of slower interpretation
in the JVM, at least until the call site’s nature can be ascertained again.
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as children.

What are the costs? The article “Too Fast, Too Megamorphic: what
influences method call performance in Java?” [104] gives us some insight.
Without inlining, non-virtual and monomorphic calls have roughly the
same performance. Inlining makes non-virtual calls about 3.3 times faster
and monomorphic calls 1.87 times faster. The difference is due to the
presence of the type guard in the monomorphic case. When inlined,
bimorphic calls are as fast as monomorphic calls.6 Megamorphic calls
are about 2.75 times slower than (inlined) monomorphic calls.

Of course, benchmarking is an art. There are countless details to be
taken into account. The article “The Black Magic of (Java) Method
Dispatch” [84] written by JVM performance expert Alexei Shipilëv goes
into much more details on the performance of method dispatch in Java.
Shipilëv reviewed the previously cited article, which lends credence to
the fact that the figures are not wildly inaccurate.

Nevertheless, it must be said that in reality, method implementations are
not empty. When inlining is performed, it enables additional optimization
opportunities and it is the loss of these optimizations that are responsible
for the real cost of megamorphic call sites, far more than the already
costly tripling in method invocation overhead.

The effect of megamorphic call sites on parser combinator performance
has been observed in practice. Using Scala macros, Béguet and Jon-
nalagedda [9] were able to construct a combinator framework that achie-
ved an order of magnitude improvement in performance over the standard
Scala parser combinator library. The method is disarmingly simple: global
inlining of every combinator implementation (excepted when recursion
prevents it). This is an excellent illustration of the performance gains
inlining can buy.

This also matches our own observation: a previous version of Autumn
was written in the Kotlin language. In this version, parsers and com-
binators were defined not as objects but as functions, which used the
inline keyword to enable pervasive inlining. We saw a 2.6x performance
improvement from the previous version, it is also 1.6x faster than the

6This is likely due to a flaw in the benchmarking methodology: it warms up the VM
using the two invocation targets, but only measures performance using a single target.
In reality, we expect to see a slight performance hit due to the occasional branch
mispredict that happens when we need to hit the second target.
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current version using an equivalent benchmark.7 Such a comparison
should be taken with a grain of salt, since other aspects of the design
underwent changes; but to us it is quite clear that inlining was the main
driving force behind the performance difference.

When profiling Autumn, it is apparent that, beyond lexical analysis,
there is no single piece of code or algorithm that dominates the run time:
overhead is spread relatively evenly over the parsing part of the code
base. Increased performance must therefore come from either squeezing
performance on the shared code paths (e.g., Parser#parse) or via a more
structural elimination of the megamorphic overheads.

A potential solution: using Autumn’s parser graph reification and traver-
sal support, we could turn it into a parser generator, which would generate
code free of megamorphic overheads. We discuss the idea further in Sec-
tion 6.5.8.

6.2 Performance Comparison
In this section, we measure Autumn’s performance by having it parse
a corpus of Java source files and produce matching parse trees. We
also subject other PEG parsing tools, as well as ANTLR to the same
benchmark and compare the results.

Our benchmark corpus is the code of the Spring framework (version
5.1.8), comprising 6933 Java files, for a total 38MB size. The project
is written in Java 8, and comprises 1 111 059 lines of Java code, among
which 622 720 non-whitespace non-comment lines.

All measurements were taken on an otherwise idle 2013 MacBook Pro
with a 2.3GHz Intel Core i7 processor, 4GB of RAM allocated to the
Java heap (using the Oracle HotSpot JVM bundled in Oracle’s JDK 12
distribution, unless specified otherwise), and an SSD drive.

The other evaluated parsing tools are Rats! [31] (part of xtc8 version 2.4.0),
a state of the art packrat PEG parser generator with many optimizations;

7We abandonned the inline design for the current version, because it didn’t support
parser reification, which we consider crucial (cf. Section 1.3).

8The eXTensible Compiler project.
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Parboiled (version 1.3.1)9, a popular Java/Scala PEG parser combinator
library; Mouse [77] (version 1.9.2), a minimalistic PEG parser generator
that does not allow memoization; and ANTLR 4 [72] a popular and
efficient state of the art CFG parser generator (cf. Section 2.1.3, version
4.7.2). Both Parboiled and Rats do not support syntax introduced in
Java 8, and so are unable to parse 177 files from the corpus.

Why those? It is true that there are plenty of parsing tools to choose from,
especially for PEG parsers. All the selected parsing tools are written in
Java (and, where relevant, generate Java parsers), which enables a fair
performance comparison. They also all offer a Java grammar written by
the tool’s author, which should guarantee that the tool is exploited to
the maximum of its ability. Many parsing tools supply simpler example
grammars (JSON is a popular example) but we believe that a good use
case should at least include an extensive infix expression syntax and some
lexical intricacies, since those seem to be some of the major performance
difficulties in practice.

These tools also have some characteristics that make them relevant, and
together they cover a lot of ground: ANTLR is the most popular Java
parsing tool and is considered to be one of the fastest (almost-)general
CFG parser available [72]. Rats is the fastest PEG parser available and
has been the object of optimization research [31]. Parboiled is a relatively
popular PEG parser, that, on the other hand, doesn’t use memoization.
Mouse doesn’t memoize either, but was the object of a packrat parsing
experiment we described in Section 6.1.3.

To evaluate Autumn, we used the Java grammar reproduced in Ap-
pendix A. In addition, we also benchmark an alternative version of the
grammar, which uses a separate lexer (adapted from the OpenJDK lexer).
In that case, the input is a list of token objects.

6.2.1 Run Times and Hot Spots

The first line of each row in Table 6.1 shows the time the parsing tools
took to parse the whole corpus and generate matching trees.10 The Time
(Single) column reports the median of 10 task runs in separate VMs.
The Time (Iterated) column reports the median of 10 task runs inside a

9We use Parboiled version 1 — version 2 is a Scala-only redesign that uses macros to
avoid the pitfalls we describe in Section 6.1.5, and doesn’t offer a Java grammar.

10Excepted for Mouse, whose grammar does not include tree-generating semantic
actions.
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Parser Time (Single) Time (Iterated) Time (Graal)

Spread Mem (Median) Mem (Peak)

Autumn 21.912s 21.837s 15.266s

3.954s (2.118s) 6M 10M

Autumn + Lexer 6.844s 5.295s 4.119s

0.206s (0.118s) 6M 9M

Mouse 147.074s 152.875s 152.922s

13.664s (7.392s) 5M 5M

Parboiled 1 18.987s 17.233s 9.952s

0.609s (0.340s) 6M 21M

Rats! 6.851s 2.705s 2.355s

1.445s (1.425s) 5M 7M

ANTLR 4 10.541s 7.388s 5.298s

0.162s (0.052s) 80M 82M

Table 6.1: Comparing the run times and memory footprints of Autumn
to other PEG parsing tools, as well as ANTLR 4. Measurements done
over 38MB of Java code.
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single VM. The Time (Graal) column reports the median of 10 task runs
inside a single VM, using the new Graal VM [107] (version 19) which
supports advanced optimizations. The reported times do not include the
VM boot time, nor the time required to assemble the parser combinators
(when applicable), if those can be reused for multiple parses. It does
however include the time needed to read the files from disk, as many of
the tested parsers read from the file all along the parse using a buffered
reader. Autumn, for its part, reads each file in memory before starting
the parse,11 as does Parboiled.

The Spread column indicates the difference between the slowest and the
fasted iterated run, after excluding the first run (usually the slowest
because the VM is just warming up and the parser isn’t entirely JIT-
optimized yet). The number between parentheses indicates the difference
between the slowest and the median run.

The run time results tell a lot of interesting stories. First off, Mouse
is very slow even though it has the advantages of not suffering from
megamorphism issues (cf. Section 6.1.5), handling infix expressions very
naively — parsing them as a big list of sub-expressions and operators,
without regard for precedence and associativity,12 and not even generating
a parse tree. In our review of Mouse’s packrat parsing experiment
(Section 6.1.3), we noted that the author’s experiment with memoization
and optimized identifier/keyword discrimination allowed him to shave
off about 20% of all function calls made by the parser.13 Our theory
is that these 20% of function calls account for much more than for
20% of the total run time, as they have to perform comparison to the
actual input. As a Mouse parser is a graph of function calls without
polymorphic indirection, function call overhead can be optimized away
fairly aggressively.

This theory aligns nicely with our experience with Autumn. Using
Autumn’s profiling capabilities (cf. Section 6.6.4)), we noticed that

11This shouldn’t be a problem, even when reading multi-gigabyte files, as long as the
size of the Java heap has been set accordingly. It does however force us to wait for
the whole file to be read before starting the parse, preventing us from aborting the
parse early in the case of an error near the start of the input.

12Our own grammar uses the expression family parsers introduced in Section 4.9 in
order to generate ASTs with the correct associativity.

13The author did not report the run time difference, and sadly did not distribute the
optimized version of the grammar.
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Autumn spends most of its time at the lexical level — even though our
lexical analysis support (cf. Section 6.3) makes sure that we never repeat
any work there! Simply finding the correct token for a given position
is what ends up taking the most time. This is perhaps not surprising
as our approach is still slightly naive: we run parsers for all tokens and
then select the longest one, whereas in reality it is fairly easy to short-
circuit this process (e.g., a valid number literal is never a valid identifier
or keyword). This longest-match approach also requires us to perform
side effect application, diffing and re-application. Introducing a more
performant lexical analysis support system is high-priority future work
for Autumn.

The cost of lexical analysis is readily apparent when one compares the
run times of our original Autumn Java grammar with that of our lexer-
supported grammar (whose measurement does include the time needed
to do the lexing). Run times are divided by a factor between 3 and 4.
In that version, Autumn’s performance is on par with that of Rats and
ANTLR.

We further used tracing to identify other parsers to memoize, but it
appears that, once the lexical layer was taken care of, memoizing the
parsers that had the highest invocation count or ran the longest didn’t
affect performance (or affected them slightly negatively).

Interestingly, the ANTLR grammar repository [97] lists two Java gram-
mars: one that sticks close to the grammar from the Java Language
Specification, and a faster one. The faithful grammar was much too slow
to include in this benchmark (it took almost 35 minutes for a single run
over the corpus). The issue seems to be that the syntax of infix expres-
sions is defined using the layered left-associative encoding (as shown in
Figure 4.2c). This further goes to show that parsing infix expressions
syntax is a challenge even for well-established and well-researched tools.
The ANTLR grammar we benchmarked in this section replaces the lay-
ered encoding by a big choice expression with associativity annotations
(Figure 4.2e) — a bit like our expression clusters (cf. Section 4.7), though
the parsing algorithm is entirely different.

Parboiled manages admirable performance for a non-memoizing parser,
though that is not entirely true — a couple rules are annotated with
@MemoMismatches which memoizes failed invocations. This is notably the
case for the rule matching identifiers and the rule matching keywords (used
to prevent matching an identifier that uses a keyword’s name). As noted
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by Mouse’s author and reported in Section 6.1.3, identifier/keyword
discrimination is a performance hot spot. The annotation is used in
a couple of other strategic locations, such as the rule that matches
primitive type names (int, float, ...) and the rule that matches Java
annotations. Parboiled matches infix expressions using the idiomatic
encoding (Figure 4.2b).

The spread numbers are fairly unsurprising, except in the case of Rats!,
where the numbers indicates that most of the spread sits above the
median — i.e., that the median run is much closer to the fastest run
than the slowest run. The reason is that Rats! actually takes two runs to
warm up entirely and get to run times that are very close to the median.
One low-confidence hypothesis is that since Rats! memoizes most of its
rules, the code paths for some parsers are much less exercised than in
other tools (at most once per file), and so take longer to get optimized.
We also note that the spread for all parsing tools is not significantly
different when using the Graal VM.

6.2.2 Virtual Machine Effects

By comparing the different columns, we can tell that most parsing tools
benefit from VM warmup. The effect is particularly striking for Rats!.
Mouse actually gets slightly worse performance from warmup. This
is probably due to its long runtime causing CPU overheating (as we
were alerted by swooshing sounds of fans), which in turns causes CPU
downclocking on MacBooks.14

All tools excepted Mouse also perform better under the Graal VM.
Autumn gets between 22 and 30% run time reduction while Parboiled
gets a whopping 42% reduction. We did expect a speedup, but not quite
that large. What surprised us however was that even generated parser
benefited, with ANTLR getting a 28% reduction and Rats! getting a
more modest 12% reduction. We don’t know which optimizations are
responsible for the speedups. Making this determination would probably
require a lengthy investigation, but it suffices to say there is not a single
obvious candidate. From the Graal website15:

The compiler of GraalVM provides performance advantages for

14Or more accurately, disables CPU overclocking once a set thermal limit is reached. We
only realized this after making the measurements, but fortunately our measurements
were not temporally contiguous, so they could not have polluted each other.

15https://www.graalvm.org/docs/why-graal/

https://www.graalvm.org/docs/why-graal/
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highly abstracted programs due to its ability to remove costly
object allocations in many scenarios. [...] Better inlining and more
aggressive speculative optimizations can lead to additional benefits
for complex long-running applications.

The fact that Mouse doesn’t benefit is perhaps not surprising: the
generated code doesn’t perform a lot of local object allocation and is
free of polymorphic overheads that would be helped by more aggressive
inlining.

6.2.3 Memory Footprint

The Mem columns in Table 6.1 show the memory usage of the parsing
tools for our parsing task. The Median column shows the median heap
size measured after a garbage collector activation16 over the course of
ten runs in the same VM. The Peak column shows the highest heap
size measured in the same conditions. We don’t hold to any objects in
between runs. The reason we measured ten runs instead of just one is
that garbage collector activations are non-deterministic, and so more run
time gives us more data points to sample from.

The memory measurements were made using the OpenJDK 12 Hotspot
VM. We also checked memory use under GraalVM17, but found that
the heap size kept unexplicably increasing across iterations. A potential
explanation is that the GC algorithm never comes around to doing a full
round of garbage collection. Whatever the reason, these numbers do not
capture the information we seek, and so we do not report them.

Memory consumption is reasonable across parsing tools. ANTLR does
consume an order of magnitude more memory than other tools, but 80M
is not an unreasonable amount of memory in practice.

6.2.4 Discussion

Results show that Autumn’s performance is on the same order as the
fastest parsing tools benchmarked (which are among the fastest general
parsing tools full stop) when lexical analysis is properly optimized, and
well within an order of magnitude of them otherwise.

We note that our benchmark — using Java 8’s grammar — seemingly

16Obtained via the -Xlog:gc flag.
17Using the equivalent -XX:+PrintGC flag.
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doesn’t involve context-sensitivity. While the grammar does not contain
context-sensitive rules, it still uses a pervasive form of parse state in
the form of the value stack used to build ASTs. Any modification to
this data structure results in changes being pushed onto our Log data
structure (cf. Section 5.6.3). In practice, we expect the Log activity due
to AST construction to dwarf any other kind of context changes. So our
benchmark does indeed prove the scalability of the underlying context-
sensitive architecture. Context-sensitivity also impacts (but does not
preclude) memoization — but given the experiments from Section 6.1.3
and our measurements, it seems clear memoization is not necessarily
needed beyond the lexical layer in most languages.

There might still be optimization opportunities in Autumn, though we
believe we have plucked all the low-hanging fruits. A more promising
direction, if performance should be a concern, would be to retool Autumn
to act as a parser generator instead of a parser interpreter as is currently
the case. This would enable getting rid of megamorphic overheads and
consequently unlock new optimization opportunities for the JIT compiler,
as well as empower us to code specific optimization to get rid of provably
redundant checks or optimize common grammatical patterns. For this,
the work of Grimm on Rats [31] is a valuable source of information — this
benchmark has clearly shown that the approach bears fruit in practice.
We discuss this possibility in Section 6.5.8.

6.3 Lexical Analysis

PEG parsers are often marketed as scannerless [27] — this means they do
not need a separate lexing (tokenization) step and can handle a stream
of characters directly (instead of a stream of tokens).

In theory, CFG parsers can be scannerless too, but many programming
languages do define their lexical layer separately from their grammar —
and do so using constructions that cannot be reproduced in the CFG
paradigm. Typically, the next token to generate for a stream of characters
is taken to be the longest-matching token, something that cannot be
emulated in CFG. Another common restriction is that identifiers may
not use the name of reserved keywords.18

18It is also possible to extend the CFG formalism with new constructs in order to
avoid separating the lexical and grammatical steps. This is for instance done by the
Scannerless Generalized-LR Parsing (SGLR) technique [100] used in the SDF syntax
definition formalism.
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These are not necessarily major impediments, but they could lead to
ambiguous parses (if your lexical layer uses longest-matches), which then
need to be disambiguated by some other means; and to invalid syntax
trees (if keywords are used as identifiers), which then need to be filtered
a posteriori.

In contrast, PEG does have lookahead operators, which can be used
to exclude some matches (such as identifiers using keyword names).
We also saw that it is easy to add a longest-match parser combinator
(Section 5.6.4) in the extensible procedural approach, and prioritized
choice can generally be used to guarantee the same outcome. However,
there are other reasons why lexical analysis is potentially advantageous,
even in PEG.

6.3.1 Motivation

The first motivation for lexical analysis in PEG is performance, as we
saw in Section 6.2. The PEG rules corresponding to tokens are “leaves”
in the parsing graph, and as such can be invoked many times at the same
input position. Second, usual programming language lexical rules enforce
that only a single token may match at any given position. So not only
are multiple invocations of the same “token rule” at the same position
redundant, but the invocation of any token rule at the same position is
redundant, once the correct token as been determined.

We noted a related observation in Section 6.1.3: Redziejowski found that
performing a dictionary lookup on identifiers to see if they weren’t using
reserved keyword names reduced the amount of function calls by 20%
(by getting rid of the negative lookahead for each keyword that would be
otherwise needed).

A second motivation for lexical analysis is improved error reporting. In
particular, knowledge about the lexical layer enables expressing errors in
terms of tokens instead of just error positions. We discuss this further in
Section 6.4.6, but for now we will just note that for this to be possible
at all, lexical constructions need to be explicitly marked as such in the
grammar.

Finally, supporting longest-matching lexical analysis emulation is con-
venient. If that is how the language has defined its lexical layer, then
we can just mark every token rule and call it a day, instead of trying to
reproduce the longest-matching semantics using the usual combinators.
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6.3.2 Autumn’s Lexical Analysis Emulation

All this suggests a new custom parser. A parser that, aware of all tokens
defined in the grammar, will when first invoked at a input position,
determine the token to match at that position (if any) and memoize the
result in a memoization table. Then it will compare the result with the
requested token and succeed or fail accordingly. Subsequent invocation
of such “token parsers” at the same position will retrieve the memoized
entry directly.

Autumn does implement this parser, and includes support for facilitating
its use in its DSL. Code fragments demonstrating Autumn’s facilities for
lexical analysis are shown in Figure 6.2 — these were adapted from our
full Java grammar.19 The full Java grammar is reproduced in Appendix A,
including the whole lexical layer specification.

If you don’t recall the meaning of the as_val, word or push combinators,
refer back to Chapter 3 (notably Section 3.1.2 and Section 3.3.1). push_-
string_match is a combinator that pushes the string matched by its
sub-parser onto the value stack.

In Figure 6.2, we mark our tokens by using the token() combinator. This
has two effects: first it registers the underlying parser as an “underlying
token parser” and second it wraps it in a token parser that acts like
described above: upon invocation it will determine the correct token
(from the memoization table or by running all underlying token parsers
and selecting the longest match) and succeed only if the selected token is
the one recognized by the parser the token() combinator was applied to.
These parsers can then be referred to directly, as shown in the while_stmt
rule which refers to _while.

Under the wraps, each instance of DSL possesses an instance of the Tokens
class, which collects all the underlying token parsers and manages the
memoization of results.20 Each token parser keeps a reference to this
instance, which it uses to find the correct token for a given position.

19The identifier syntax was simplified to only allow alphanumeric characters.
20The Memoizer used to manage the memoization can be customized, as per Sec-
tion 6.1.4.
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1 // ...

2
3 public rule _while = word("while") .token();

4 public rule _false = word("false") .as_val(false) .token();

5 public rule _true = word("true") .as_val(true) .token();

6 public rule _null = word("null") .as_val(Null.NULL) .token();

7
8 public rule iden = seq(alpha, alphanum.repeat(0))

9 .push_string_match()

10 .word()

11 .token();

12
13 // ...

14
15 public rule while_stmt =

16 seq(_while, par_expr, _stmt)

17 .push(xs -> WhileStatement.mk($(xs,0), $(xs,1)));

18
19 // ...

20
21 public rule literal = token_choice(

22 integer_literal,

23 string_literal,

24 _null,

25 float_literal,

26 _true,

27 _false,

28 char_literal)

29 .word()

30 .push(xs -> Literal.mk(xs[0]));

31
32 // ...

Figure 6.2: Code fragments showcasing Autumn’s facilities for lexical
analysis.
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Note that the order in which the tokens are defined is relevant: whenever
two token parsers match the same amount of input, Tokens will select
the token parser that appeared first. In Figure 6.2 this allows us to make
sure that we will never match an identifier named while, true, false, ...
which is a requirement in most languages.

What if our language does allow identifiers that clash with keyword
names? Then it suffices to remove identifiers from the set of tokens. If
performance is a concern, the iden parser can still be memoized on its
own, as explained in Section 6.1.4.

Autumn includes a further performance-enhancing trick regarding tokens.
It is not uncommon to want to match one token amongst a predefined
set. This is exemplified in the literal rule of Figure 6.2. The naive way
of doing this entails building a disjunction of token parsers, which means
we will perform (at worst) one memoization table lookup per token in
the set. Instead, Autumn offers the token_choice combinator, which will
perform only a single lookup (or initial matching) and then compare all
the token parsers in the set to the result.

Section 6.2 demonstrated that our lexical emulation brought about consid-
erable performance improvements when compared to support compared
to a naive (non-memoized) approach. But it also hinted at the fact that
carefully ordered lexical-level rules along with judicious use of memoiza-
tion could be even faster — by virtue of achieving the longest-matching
semantics without actually having to try every lexical parser. Our pre-
liminary experiments seem to confirm this. More research is required to
determine if we can preserve the convenience of obtaining longest-match
semantics by simply marking token rules, while closing the performance
gap with the hand-optimized case.

One of the best things about Autumn’s support for lexical analysis is
that it is completely optional — it is an efficient emulation performed
by custom parsers. One can still match against the character stream
directly.

In fact, it is possible to take things even further than that, and mix
multiple modes of lexical analysis! This is made possible by instantiating
new Tokens instances. New token parsers can then be created by using
Tokens#token_parser(Parser) and new token choice parsers by using
Tokens#token_choice(Parser...). This is handy when one wants to
compose languages that use different sets of tokens or impose different
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lexical rules.

We stress that the whole support for lexical analysis is build using user-
available features. We conveniently package it for use, but users could
have built it from scratch (including the DSL representation) without
running into limitations imposed by Autumn.

Finally, Autumn also supports conventional external lexical analysis:
Autumn’s input can be either a textual String or a list of objects —
which could be token emitted by a separate lexer.

In summary, Autumn enables emulating a separate lexical analysis step
via a specialized form of memoization, made available as a built-in parser.
There are multiple benefits to using this feature: first there are large
performance gains to be had; second, the parser can be used as a marker
of the boundary between the grammatical and lexical layer, which can be
used to improve error reporting and handling; third, it enables composing
multiple lexical analysis modes.

6.4 Error Reporting & Recovery
We discussed some background on error reporting in Section 2.6. We said
that within most parsing tools, error reporting is usually based on the
furthest error heuristic: whenever a parse fail, report the furthest input
location reached by the parser.

In terms of error identification, it is difficult to automatically go beyond
the furthest-error heuristic. Any improvement must necessarily come
from domain knowledge and so be encoded into the grammar somehow.
In fact, all the non-recovering error-reporting techniques surveyed in
Section 2.6 rely on the user annotating the grammar in some way.

Error recovery, on the other hand, is slightly more amenable to automa-
tization. This can in turn serve error reporting: indeed, an error that is
successfully recovered from (leading to a successful parse, or even just to
a big increase in the furthest error position) is more likely to constitute
the real syntax error made by the programmer.

In this section, we discuss Autumn’s modest built-in capabilities for error
reporting, then we discuss multiple possible strategies for advanced error
reporting and recovery — with or without domain knowledge — that
can be implemented using Autumn’s existing capabilities. We lead with
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some performance discussion that is relevant to what follows.

6.4.1 Performance & Error Reporting

It is important to consider the cost of error-reporting techniques. Since
many potential errors are encountered when running a backtracking
parser, any computation made on these occasions is going to significantly
contribute to the performance overhead of the parsing framework. Here
too, the furthest error heuristic is advantageous, as it just requires us to
keep track of a single number.

In general, parsing performance is much more crucial on valid input than
on invalid input. When compiling a whole software project from scratch,
we care about speed very much. However, in case of error, it’s fine to
take a bit more time, as long as the information comes fast enough. In
other words, the issue changes from one of throughput to one of latency.
To give some perspective, users don’t seem perceive the latency of a
touch action (like pressing keys on a keyboard) when it is under 96ms
(when the feedback is projected in front of them) [20]. So for instance,
it should take less than 96ms for a text editor to display a letter once
it has been typed on a keyword, otherwise the user notice the input lag.
By comparison, Autumn parses more than 6000 Java files in 23 seconds
in the worst case (cf. Section 6.2), or less than 4ms per file on average.
Clearly, even a two order of magnitude slowdown on the parsing of errors
is acceptable. Even if many files contain errors, the user cannot take in
the error messages as fast as they are produced. Therefore, a common
error-handling strategy is to do a first, fast, parse; and in case of failure to
perform a second, slower, parse that is able to more accurately pinpoint
errors.

To support slower user-defined error-handling strategies, Autumn lets
the user define custom options that are accessible from the Parse object.
Advanced error tracking options can be set on slow parses but not on
fast parses.

6.4.2 Autumn’s Error-Reporting Capabilities

By default, Autumn only records the furthest error position. It also lets
users specify error messages in failed parsers by using Parse#set_error_-

message(String) — after which the parser should return false, lest the
call be meaningless and ignored. If the error turns out to be the furthest
error encountered so far, the message is recorded — it will be discarded
if an even furthest error is encountered.
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Every parser also has an ignore_errors field, which if set to true, will
cause any parsing error that occurs during the parser’s invocation (in-
cluding the invocation of its sub-parsers) to be ignored for the purpose
of determining the furthest error. Within Autumun’s lexical analysis
emulation support (cf. Section 6.3), every token parser has this flag set:
in this way, errors are never reported inside a “token” but only at token
boundaries.

Though it is meant more as a help for grammar authors, Autumn is also
capable of recording and displaying the stack of parser invocations at the
time of the furthest parse error. This will be explained in Section 6.6.1.

Finally, Autumn can automatically translate input positions (which are
simply indices) into a (line, column) format via a LineMap object. This
object allows specifying a few parameters such as the starting column
(as this can be 0 or 1 depending on the text editor), and the size of tab
stops.

Autumn does not include further built-in error-reporting strategies, but
has all the infrastructure necessary to build a vast array of error-repor-
ting strategies building upon the user’s domain knowledge. The rest
of this section will explore a few strategies that could be employed to
exploit these possibilities, even though we didn’t thoroughly investigate
the effectiveness of these options in practice.

There are many interesting directions, and not everything can be pursued.
The ideal approach would have been to try to produce “production-level”
error messages (i.e., at least comparable in quality to those generated by
the compilers of mainstream programming languages) for a real-world-
sized grammar, such as our Java grammar (Appendix A). Evaluation can
be performed on a predefined corpus of erroneous source files, potentially
assorted with a corresponding corrected source file, or with some data
indicating the nature and location of the actual error. This effort could
have been the basis for the selection of a number of techniques and
strategies that seem broadly applicable and high-value-added in practice,
which could then be included in Autumn as built-in components.21

21In fact, this kind of process is what underpins the selection of most of the “built-in”
facilities of Autumn — components (parsers, visitors, ...) that could have been
written by the user but are valuable enough to be provided by default.
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6.4.3 Custom Error States & Introspection

One first obvious thing that can be done is to collect additional infor-
mation to serve in error reporting. Such information can be stored in a
ParseState instance (cf. Section 5.6), but most likely won’t need to be
handled via the Log: we don’t want error information to be discarded
upon backtracking!

Custom parsers are also able to inspect the state of the Parse object to
get the current input position and furthest recorded error (and possibly,
the associated error message). Whenever the option is enabled, the parser
call stack (cf. Section 6.6.1) can also be inspected.

6.4.4 Longest-Match Analysis

In our 2018 vision paper “Red Shift: Procedural Shift-Reduce Parsing”
[55], we proposed a parsing paradigm based on unambiguous (prioritized)
shift-reduce parsing. The peculiarity of the approach was that instead
of attempting to only match rules that the grammar deemed acceptable,
we attempted to match every grammar rule each time a parsing decision
had to be made, and picked the first rule that succeeded. In fact, Red
Shift doesn’t feature grammar rules, but rather reduction rules which are
custom functions that can manipulate the LR-like stack and the token
stream. Reductions rules are an ad-hoc LR pendant to custom parser
combinator.

We never came around to implementing a full-fledged version of this idea.
First by lack of time, but second and foremost because we realized that
while custom functions offer a lot of flexibility, there are a number of
challenges around the definition of infix expressions (of course) that are
very hard to solve without departing from Red Shift’s principles. We still
think our idea has merit, but a re-examination of the underlying principles
would be required to overcome the challenge. A particular intuition we
have here is that — just like transparent left-recursion handling in PEG
required the introduction of a limited form of bottom-up parsing in the
parsing — maybe the challenges around expression parsing will require
the introduction of a limited form of top-down parsing.

Nevertheless, the whole experiment did inspire an interesting error-repor-
ting strategy applicable to Autumn. The idea is as follows: whenever
we fail to parse an input, we start a second “parsing stage” where we
actually attempt to parse every single grammar rule at the start of the
input. Once the longest-matching rule has been determined, we restart
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this process, but this time at the input position where the previous match
ended (or at the next position, if no rule matched). We continue this
process until we have consumed the whole input, obtaining a sequence of
matches in the process. This sequence of matches is equivalent to what
we call the most reduced stack in the Red Shift paper. The sequence can
be used as a basis for error recovery and error reporting.

In the Red Shift paper [55], we propose that the user define a series
of error-reporters that try to determine why a reduction didn’t occur.
The same principle could be applied, but more broadly, in our proposed
Autumn strategy. For instance, we could instantiate an error reporter for
each sequence parser, which would try to find instances of the sequence
with a single mismatched or missing item, within the sequence of matches.
Let us take a concrete example: the error-reporter for the parser seq("a",
"b", "c") would detect that in the input axc, replacing x by b could
make the parser succeed. In this case, the longest-match sequence would
be something like [match(word(“a”), 0), no_match(1), match(word(“c”),
2)] — indicating that a was matched at position 0 and c at position 2,
while x didn’t match any parser in the grammar.

Many other error reporters can be imagined. First for other kind of
parsers (repetitions, longest-match, ...), but also implementing more
general strategies. We could thus recapture and expand some strategies
from Section 2.6: imagine reporters that speculatively insert, remove or
replace a match from the sequence. We note this is a much more general
than speculatively inserting a character or token: it allows inserting whole
higher-level constructs, but also enables making predicate parsers succeed
(which wouldn’t necessarily be possible otherwise for context-sensitive
predicates).

Such an approach is necessarily costly: parsing itself will be slower than
a regular parser by a factor that depends on the size of the grammar and
the input size. This aspect can be mitigated by memoizing all parsers,
and sharing the same memoizer between all parsers and parses (something
that can already be done in Autumn). The error reporters themselves
could also prove costly (each of them may have to iterate the whole
longest-match sequence), and there may potentially be many of them.
Measurements are required to tell a more complete story.

Another challenge is to discriminate between multiple possible error
reports. This probably requires the introduction of a second tier of
heuristics to favour errors that can be corrected with finer changes.
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If the approach were to work, it would be very attractive, as it allows
us to deploy a mixed set of general heuristics (the error reporters) while
leveraging the already-recognized structure of the input (in the form of
the longest-match sequence). It remains to be seen if the approach is
able to produce quality error messages in practice, and to do so in an
acceptable amount of time.

6.4.5 Error-Recoverable Parsers

A way to enact error recovery in Autumn is to make parsers lie: make
them pretend they succeed when in reality they didn’t. This can be seen
as a form of graceful degradation: first the parser tries to match according
to its “real” semantics, then if it fails, it performs an error-recovery action.
For instance, it could search for a synchronization point in the input (cf.
Section 2.6) and then succeed as though it had properly consumed the
input up to the synchronization point.

Such a “synchronization point” parser can be very effective if applied
at strategic points in the grammar. In a language with curly brackets
and semicolons, it could be applied around the rule for statements, and
instructed that if it fails to match a statement, it should skip to the
next semicolon or past the next balanced pair of curly brackets. Best
of all, such a parser doesn’t really require special support: just make a
prioritized choice whose first sub-parser is the real deal, while the second
sub-parser consumes input up to the synchronization point.

Another form of parser that may perform error recovery is what we call a
bounded parser. A bounded parser has two sub-parsers: the first, coarse,
sub-parser delimitates a part of the input (for instance, a portion of input
contained between a matched set of curly brackets, without inspecting
the intervening characters except to ensure proper bracket pairing), while
the second, fine, sub-parser is used on the delimitated input.

Note that these semantics cannot be obtained by using the lookahead
combinator: nothing prevents the fine parser to parse further than the
coarse parser. In fact, implementing the bounded parser required us
to add a small feature to Autumn: an end_of_input field was added to
Parse, holding the position of the end of the input. The bounded parser
temporarily changes this field to make sure the fine parser can’t escape
the boundary delimited by the coarse parser.

Beyond its increased expressiveness, the bounded parser can be used for
error recovery: if the fine parser fails to match, the bounded parser can
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still succeed having matched the same thing as the coarse parser. The
canonical use case is matched pairs of delimiters such as brackets and
quotes ({}, <>, '', etc).

In Autumn, the bounded parser is implemented in the Bounded class,
which additionally to its two sub-parsers, takes a function that will be
run on the Parse object if the fine parser fails, and returns a boolean
which determines if the bounded parser succeeds or fails.

We could also work in the opposite direction: instead of degrading our
parse in case of error, we could progressively refine the parse: we can
imagine a first parse that only matches code as a set of nested blocks, a
second parse may break these blocks up in statement while a third parse
tackles the nitty gritty of expressions. The advantage of this approach is
that it doesn’t require the use of custom parsers.

We still need to discuss an important piece of the puzzle: when a parse is
degraded in favour of a recovery action (whether reaching a synchroniza-
tion point, or eschewing a failed fine parser), how should this information
be communicated? We can conceive of two solutions. The first is to
emit AST nodes corresponding to the errors. For instance, instead of the
node that the fine parser would have generated, we generate a node that
indicate an invalid (but bounded) stretch of input. In fact, this is not
only a way to report an issue, but also a necessity in many cases: the
AST construction logic will typically expect a node from the bounded
parser, and so a node must be provided! The second, complementary
solution is to report the event somewhere, such as a list of “errors” stored
in a ParseState.

These error-recovery mechanisms don’t really help precisely pinpoint
errors or generate good error messages. What they do however enable is
to continue parsing past an error site, which is a necessity if we want to
report multiple errors within a single input. Often, even partial parse
data can be exploited. This is most notably the case in IDEs: even
if a statement contains a syntax error, we would still like to provide
services to other statements, such as syntax highlighting, code analysis,
auto-completion, etc.

6.4.6 Lexical-Level Error Reporting

As we have seen in Section 6.3, Autumn includes support for lexical
analysis emulation. Lexical analysis (the process of breaking up the
input in a chain of tokens) can be used to improve error messages — by
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referring to tokens instead of just input positions. In fact, the following
kind of error message has become rather standard in all sorts of compilers:
“Unexpected token X at line 2 column 3, expected token Y, Z or W.”

Can we achieve something like this in Autumn: enrich the furthest error
message with token data? We can, provided that we supply the Tokens

class (which is responsible for parsing tokens) with a custom memoizer
(cf. Section 6.1.4). This memoizer should have two requirements: first, it
should hold on to the tokens it matched, and second, it should record
which tokens were attempted at which position.22 The second requirement
does add a fair bit of overhead, and full memoization doesn’t seem to
be the fastest option in practice (Autumn uses a cache with 8 entries by
default).

Another reason why lexical-level error reporting is not built into Autumn
is that while these messages look good, they typically aren’t very helpful:
looking at the indicated input position immediately reveals which token
was matched there, and there are typically a lot of tokens that could have
been accepted instead. For instance, in Java, if a semicolon is misplaced
after an identifier in a parameter list, the parse would have progressed if
it had been replaced with almost any infix or postfix operator, a comma,
an opening or closing parenthesis, ... There just are not a lot of cases
where we only expect a couple of different tokens, though these surely
do exist: for instance (still in Java), expecting an identifier after a type
name in a variable or method declaration. But in these cases, the user’s
surprise generally is not about what was expected there, but about the
fact that what he put there was rejected. This would for instance be the
case if trying to add a type-parameter list after the return type in Java:
void <T> foo(); is illegal but <T> void foo(); is legal.23

In summary, Autumn’s default error-reporting capabilities are simple:
it can report the furthest error encountered, and user-specified messages
can be attached to such errors. Prioritized choice, as well as the Bounded

parser can be used to implement permissive parsing — falling back to a
permissive input specification whenever the precise input specification fails

22We could discard memoized information for input position lower than the current
furthest error, but some parsers (those that have their exclude_errors field set) can
reset the position of the furthest error — so doing so is inherently unsound.

23This example is interesting, because the error message we would like to generate —
saying that <T> is misplaced — is almost impossible to generate automatically: we
have to encode this particular case explicitly. An error reporter from Section 6.4.4
might be able to do so, however.
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to match. Autumn also includes many features that makes it possible to
build advanced language-specific error reporting and recovery capabilities,
such as the possibility for users to manage their own state, and the ability
to inspect the parser invocation stack. We also explored an example of
what a powerful error reporting and recovery system could look like in
practice (longest-match analysis).

6.5 Grammar Traversal & Parser Visitors
In Section 1.3, we emphasized the need for the grammar reification.
Autumn doesn’t really feature a first-class notion of grammar, though
the term is used to mean the class in which rule definitions appear.
Instead, the grammar is de facto reified in the form of the parser graph,
made out of all Parser instances (cf. Section 3.2), with the method
Parser#children() defining the parent-child relationship — directed
edges. This section explains how this reification can be exploited in
practice.

6.5.1 Grammar Traversal

First we note that, in the presence of recursion, a parser graph will be
cyclic. This makes its traversal challenging. Indeed, it precludes us from
traversing the graph as if it were an acyclic graph, using simple recursion
to traverse the children. Additionally, it is generally desirable to traverse
a given parser only once, even when it is reachable through multiple
paths in the parser graph.

To remedy these issues, we provide the ParserWalker abstract class. This
class defines the walk(Parser) method, used to traverse the parser graph
starting from the given parser (only parsers reachable through this parser
will be traversed), and the abstract work(Parser, State) method to
define the work to be done for a given parser. Here State designates
one of multiple possible states the walker can be in, in relation with the
parser.

The possible values of State are BEFORE, AFTER, RECURSE and VISITED.
For each reachable parser, the work method is guaranteed to be called
exactly once with state BEFORE (before traversing the parser’s children)
and AFTER (after traversing the parser’s children). Additionally, it may
be called any number of times with state RECURSE — when encountering
a recursion on the parser (i.e., work has been called for that parser with
state BEFORE, but not yet with state AFTER). This will cause the recursion
to be cut off: the parser’s children won’t be traversed again. For a given
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parser, work may also be called any number of times with state VISITED,
indicating that the parser has already been traversed (i.e., work was
invoked with both BEFORE and AFTER states) but was encountered again
through a different path in the graph. This also cuts off recursion to
ensure that no parser is traversed twice.

This interface enables non-recursive depth-first traversal of the graph,
and should be reasonably familiar to most programmers. We do note
the existence of more expressive traversal models [6, 11], which enable
flexible traversal customization and, accordingly, more expressive match-
ing of the state of the traversal (via join points and pattern matching).
These approaches are often also concerned with tree rewriting during the
traversal. We only support rewriting in the sense of producing a modi-
fied copy, which is achieving by extending CopyVisitor, a ParserWalker

implementation (and also a visitor) which performs a copy of the parser
graph. This will be explained in Section 6.5.6.

6.5.2 The Expression Problem

In addition to traversing the grammar, it is often opportune to define
operations whose implementation varies depending on the type of parser
you are dealing with. In an idealized world, one would add an abstract
method to Parser and implement it for all parsers. Alas, Parser is defined
as part of Autumn, and users cannot modify it (nor can they modify
its built-in subclasses). An alternative is to use the well-known visitor
pattern [29]. Here is a brief summary of how the pattern would apply to
Autumn:

• Create a ParserVisitor interface with one overload per Parser

implementation (e.g., visit(Sequence), visit(Choice)).

• Add a single abstract accept(Visitor) method to Parser.

• Implement this method for all parsers, having it call the overload
method with this as parameter (i.e., visit(this)). Because the
call is made in the method implementation, the static type of this
will coincide with its runtime type and the correct overload will be
called.

• Define new operations specialized per-parser by implementing the
ParserVisitor interface, and passing an instance of the implemen-
tation to a parser’s accept method.
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This solution has a big downside: all parser implementations need to be
listed in the visitor interface. Imagine we distribute such an interface
with Autumn, including an overload for each built-in parser. In theory,
users won’t be able to add specialized operations for the custom parsers
they implemented themselves! Since extensibility is one of the main
selling point of Autumn, this is unacceptable.

The issue — the inability to add both new operations and new forms
of data (in this case, parsers) — is a well-known one: the expression
problem, a term coined by Philip Wadler in a discussion on the Java
Generics mailing list [102]:

The expression problem is a new name for an old problem. The goal
is to define a datatype by cases, where one can add new cases to the
datatype and new functions over the datatype, without recompiling
existing code, and while retaining static type safety (e.g., no casts).

In an object-oriented system, datatype cases are subclasses (or interface
implementations), while functions are methods (more precisely an abstract
method and its implementations) or visitor implementations. One can
see the dilemma: if methods are fixed (in the superclass), one can add
new subclasses easily. If the subclasses are fixed, one can add new visitors
easily. It is when one wants to be able to add both that things become
difficult.

The literature on the expression problem in object-oriented languages
(and in particular Java) is surprisingly rich [95, 69, 103]. Most of these
solutions do however have issues that make them undesirable for our
purpose.

First, they all struggle with the issue of independent extensibility [109],
which in our case means that if two different users implement (for in-
stance) new visitors and new parsers which they redistribute, a third user
should be able — after supplying the required specializations — to use
the visitors of the first user with parsers of the second, and vice-versa.24

Zenger and Odersky, who first publicized the independent extensibility
requirement [109] propose a solution in Scala, which uses a combination
of abstract type members and mixin composition, two advanced features

24The issue generally stems from Java and similar language’s proscription of multiple
inheritance. Extensions can be made linearly by inheritance, but divergent extensions
cannot be composed back together. As we will see, the introduction of default method
implementations in Java 8 brings about change.
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unavailable in Java.25 Similarly, object algebra are amenable to indepen-
dent extensibility [70] in Scala, but this involves a tremendous amount of
boilerplate and is not type-safe when done in Java. Other methods do
not support independent extensibility.

Another limitation, less often noted, is that since these solutions do
use complex type encodings (for instance, using advanced parametric
polymorphism, or even representing an expression as a call graph instead
of a data structure [69]), it is not always possible to aggregate them in
even a simple collection.26

6.5.3 A Clean But Verbose Partial Solution

Quite clearly, existing solutions to the expression problem in Java won’t
do — parsers are frequently collected in arrays inside parsers, we value
independent extensibility, and foisting a lot of byzantine generics upon
the user seems like one of the worst possible thing to do. So we set out
in search of a solution that would work better for us.

The first scheme we arrived at is based on the classical visitor pattern
as presented in Section 6.5.2. We forego type-safety in the sense that
we cannot longer guarantee that a visitor passed to a parser’s accept

method will be able to handle that particular parser. It is now the user’s
responsibility to ensure that the supplied visitor handles all parsers it
might visit.

We enable independent extensibility by using Java 8’s default method
definition in interfaces. Our visitor implementations now live in interfaces
instead of classes. The final user is now responsible to create the class
that will “tie together” the visitor’s implementation. The advantage
of this is that a single class can inherit default implementations from
multiple interfaces, making independent extensibility possible.

25The solution has common another issue, namely requiring to change all data classes
when new operations are introduced, which either causes data classes in different part
of the code to be incompatible, or requires the parameterization of all instantiation
sites.27

26When it is possible, it is either that type-safety is not enforced — which we’ll see is
an interesting concession to make — or that (for the concerned solutions) all type
parameters have been made uniform. However, this requires parameterizing all the
instantiation sites.27

27Such parameterization of instantiation sites adds a lot of noise to the code, even
when using a specialized tool such as a dependency injection framework.
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To make things more concrete, we will use the code skeleton shown in
Figure 6.3 to exemplify the principle of the solution.

The Sequence parser class is used as an example of how the accept

method is implemented in built-in parsers. We also have one visitor
implementation (MyVisitor) with one overload for each built-in parser.
This is simply the classical visitor pattern, with the important difference
that MyVisitor is an interface!

We now imagine that two users each independently create a new parser:
Foo and Bar. The scheme calls for them to extend the ParserVisitor in-
terface with an overload for their new parse: VisitorFoo and VisitorBar.
To make MyVisitor compatible with the new parsers, our users need to
extend it and implement the specialized visitor class. This is done in
MyVisitorFoo and MyVisitorBar (again, these are interfaces).

Finally, imagine a third user that uses both the Foo and Bar parsers
in his grammar, and also wants to run MyVisitor on the parser graph.
This user must compose MyVisitorFoo and MyVisitorBar together as
MyVisitorFooBar, which he can then use to actually invoke the visitor
(exemplified in the main method).

Dear reader, this is not the solution we ended up using.

This was, we still think, a good solution. It trades a bit of compile-time
safety in order to satisfy the other requirements, without resorting to
complex encodings that require extensive parameterization. Additionally,
it supports independent extensibility and the free manipulation of parsers
(which can be collected in collections).

But good doesn’t mean best. When taken from the user perspective, a
user that writes some new parsers now needs to define one additional
interface, and one more for each existing visitor he’ll extend (and ideally,
we would want him to extend all of them!). If he wants to use any of
these visitors, he’ll also have to create a class for each of those. There is
not much complexity going on here, but this is a whole lot of boilerplate
that might understandably put off the user. From the perspective of a
user that reuses third-party parsers and visitors, there is composition to
be performed (i.e., writing an empty class that implements the proper
interfaces) for every visitor he wishes to use. That just is not very good
user experience.
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1 public final class Sequence extends Parser {

2 // ...

3 @Override public void accept (ParserVisitor visitor) {

4 visitor.visit(this);

5 }

6 }

7
8 public interface MyVisitor extends Visitor {

9 // ...

10 @Override default void visit (Sequence parser) { /* ... */ }

11 }

12
13 public final class Foo extends Parser {

14 // ...

15 @Override public void accept (ParserVisitor visitor) {

16 ((FooVisitor)visitor).visit(this);

17 }

18 }

19
20 public interface VisitorFoo extends Visitor {

21 void visit (Foo parser);

22 }

23
24 public interface MyVisitorFoo extends MyVisitor, VisitorFoo {

25 @override default void visit (Foo parser) { /* ... */ }

26 }

27
28 public final class Bar extends Parser {

29 // ...

30 @Override public void accept (ParserVisitor visitor) {

31 ((BarVisitor)visitor).visit(this);

32 }

33 }

34
35 public interface VisitorBar extends Visitor {

36 void visit (Bar parser);

37 }

38
39 public interface MyVisitorBar extends MyVisitor, VisitorBar {

40 @override default void visit (Bar parser) { /* ... */ }

41 }

42
43 public class MyVisitorFooBar implement MyVisitorFoo, MyVisitorBar {}

44
45 public static void main (String args[]) {

46 some_parser.accept(new MyVisitorFooBar());

47 }

Figure 6.3: Code skeleton showing the outline of our first solution to
the expression problem, using a scenario where independently-developed
extensions (new parsers extending an existing visitor) are composed.
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6.5.4 A User-Friendly Partial Solution

The amount of boilerplate in the previous solution bothered us very much.
We consider the ability to not only develop custom parsers but also reuse
those created by others to be key in Autumn. At the same time, the
ability to reify and work with the grammar is paramount for a flexible
and re-purposable parsing tool. Making visitors too verbose makes these
two aspects at odds with one another: the authors of custom parsers are
less likely to extend visitors they don’t themselves use, and the users of
independently developed custom parsers will be bothered by the need for
manual assembly.

One possibility we had in mind was to simply have a visitor be a map from
(parser) classes to some kind of function corresponding to a former visit
overload. This is not compile-time safe, but neither was the previous
solution. A glut of hash table lookups can slow things down, but visitor
invocations don’t tend to be on the critical performance path. They are
used as analysis and generation tools, and are run against the grammar,
not the input. Our built-in visitors (cf. Section 6.5.5) also tend to be data-
structure heavy already, so adding these lookups won’t fundamentally
alter their performance characteristics.

But we can do better: we can keep the classical visitor pattern for built-
in visitors, but add an overload that will catch all unhandled parsers
(with signature visit(Parser)) and perform a map lookup within that
overload. In that way, no overhead is introduced for built-in parsers,
which should form the bulk of the parsers used in a grammar.

To underline the difference, let’s look at Figure 6.4, which develops the
same scenario as Figure 6.3 but using this new hybrid solution. We
didn’t reproduce the Sequence class, which is unchanged from before.
MyVisitor is now a class, and only requires specifying a default action
for unhandled custom parsers: when possible, the most conservative
assumptions possible should be made, otherwise an exception should be
thrown — these are the cases that compile-time safety was supposed
to catch. Note it is now no longer necessary to override accept in the
custom parsers. The visitor logic for the custom parsers now lives in a



6.5. GRAMMAR TRAVERSAL & PARSER VISITORS 199

1 public class MyVisitor implements Visitor

2 {

3 // ...

4
5 @Override public void default_action (Parser parser) {

6 // ... (some conservative behaviour, or an exception)

7 }

8
9 @Override default void visit (Sequence parser) {

10 // ...

11 }

12 }

13
14 public final class Foo extends Parser {

15 // ...

16 static {

17 ParserVisitor.extend(MyVisitor.class, Foo.class, (parser, visitor) -> {

18 // ...

19 });

20 }

21 }

22
23 public final class Bar extends Parser {

24 // ...

25 static {

26 ParserVisitor.extend(MyVisitor.class, Bar.class, (parser, visitor) -> {

27 // ...

28 });

29 }

30 }

31
32 public static void main (String args[]) {

33 some_parser.accept(new MyVisitor());

34 }

Figure 6.4: Code skeleton showing the outline of our second solution to
the expression problem, using a scenario where independently-developed
extensions (new parsers extending an existing visitor) are composed.
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static initializer within the parser.28

There is actually a lot more than meets the eyes in this version. Where
are these maps we talked about earlier? They are actually managed
by ParserVisitor by default. This is itself quite tricky: how can an
interface manage a map for each of its implementations? By going meta,
and keeping these maps in a higher-level map whose keys are visitor
Class objects. To avoid the overhead of doing not one but two hash
table lookups each time a custom parser is visited, a caching mechanism
is implemented. The theory is simple: we expect to see a visitor used
repeatedly, rather than see multiple interleaved invocations of different
visitors. If that should nevertheless be the case, we added the option
for the visitor to manage his own map, alleviating the need for the
first lookup. For bonus points, both the caching mechanism and the
ParserVisitor.extend method are thread-safe.

Another notable thing is that ParserVisitor manages the dispatch of the
visitor to the correct implementation (held in the maps) itself. It does so
by providing a default implementation for the ParserVisitor#visit(

Parser) “catch-all” method, which is called by the Parser#accept(

ParserVisitor) method for all custom parsers. If no such implementation
is found, then the default_action method is called instead.

Our first iteration on the idea wasn’t so elegant: it required each visitor
to manage its own map, extension mechanism (i.e., the equivalent of the
extend method) and dispatch mechanism. Composition became easier,
but on the other hand it still foisted some boilerplate on the authors of
visitors.

In summary, we went from an efficient but verbose and inconvenient
solution to one that traded-off some (but in most cases, very little) of
that efficiency for an almost-optimal level of brevity. We appreciate that
this solution is really simple and hard to misuse: the only thing to do
is call ParserVisitor.extend before running a visitor — preferably only
once, but the method is idempotent so even that aspect of it is forgiving.
By contrast, the previous solution (Section 6.5.3) had quite a lot of rules
in how the boilerplate had to be constructed — so many opportunities to

28This is a good place for them, because it guarantees that the visitor logic will be
loaded whenever the class is loaded. When adding visitor logic to a parser you didn’t
write, you can alternatively put it in a static initializer of your grammar class. The
key is that the extend call should be made before the visitor may visit the parser —
and preferably only once!



6.5. GRAMMAR TRAVERSAL & PARSER VISITORS 201

get things wrong. The independent extensibility scenario involves three
users, and it is possible that only the user performing the composition
may suffer from a poorly executed boilerplate (such as a visitor directly
implemented as a class instead of an interface). Not an enviable situation.

The visitor architecture may at first seem a rather inconsequential matter,
but it has a big user-experience impact on one key aspect of the tool,
and it was one of the big implementation challenges we faced. We felt
it deserved a good discussion, which shows how these matters can be
handled in practice, and in extensible frameworks in particular.

6.5.5 Well-Formedness Checking Using Built-In Visitors

Autumn bundles four built-in parser visitors and three parser walk-
ers (two classes actually belong to both categories). All but one of
these classes work in concert to check if Autumn grammars are well-
formed [27]. Well-formed grammars contain no left-recursion — in
our case, unhandled left-recursion: left-recursion broken by the left_

recursive (cf. Section 4.5) combinator is fine — and no repetitions over
parsers that are nullable (i.e., parsers that can succeed without matching
any input). These visitors and walkers are:

• VisitorNullable is both a visitor and a walker, used to check the
nullability of parsers.

• VisitorFirstParsers is a visitor that, for a given parser, deter-
mines its FIRST set (cf. Section 4.6): the set of direct sub-parsers
(children) that this parser may invoke at the same input position.
This visitor uses a VisitorNullable. Indeed: sequence(a, b) in-
cludes both a and b in its FIRST set if a is nullable.

• VisitorNullableRepetition is a visitor that, for a given parser,
determines if that parser can repeat over a nullable parser. It
obviously uses a VisitorNullable as well.

• WellFormedChecker is a walker that uses a VisitorFirstParsers

to find unhandled left-recursive cycles in the grammar; and runs
VisitorNullableRepetition on every parser in the grammar.

By default, Autumn runs the well-formed checker on a grammar before
each parse (this can be disabled via an option), and emits error messages
if it finds unhandled left-recursive cycles or nullable repetitions. This
prevents parses that unexpectedly loop forever.
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A point of detail: VisitorNullable is both a visitor and a walker because,
unlike the two other visitors, it is highly recursive in nature. Its use
by VisitorFirstParsers caused a massive amount of repeated visitor
invocations, therefore we had to memoize VisitorNullable’s results.
Given that, implementing it as a ParserWalker is mostly a matter of
convenience. When the nullability of a parser is queried, a walk is
triggered. A parser’s nullability is determined on the AFTER state. At this
point, by definition, the nullability of its sub-parsers has already been
established and we can read these results from the cache.

Moreover, a walker retains its state after a walk, and we can consequently
traverse the parser graph from multiple different entry points while
preserving the guarantees outlined in Section 6.5.1: the work method
is only invoked once with the BEFORE and AFTER states, but is invoked
with VISITED each time it is encountered after the AFTER state. There-
fore, as VisitorFirstParsers and VisitorNullableRepetition query
NullableVisitor, the cache of results builds up progressively, without
any repeated work.

6.5.6 Grammar Transformation Using CopyVisitor

The last built-in visitor is a also a walker: a CopyVisitor performs a deep
copy of a grammar’s parser graph. By extending this class and overriding
its visit methods, one can opt to replace a straight parser copy with a
modified version instead.

In Section 4.6, we said that while we could statically detect left-recursion
(as we explained in the previous section), we do not want to rewrite the
grammar to insert left-recursive combinators. One key reason is com-
plexified debugging (traces don’t correspond to the grammar). Another
problem concerns the semantics of parser walkers: should they be run
before or after a grammar transformation, or maybe both?

The idea of performing a transformative copy helps clarify the semantics
of walkers and visitors. We are not rewriting the grammar in-place: we
are creating a new modified grammar, which can be used independently
of the original, and on which walkers and visitors may also be run
independently.

There are a couple of things to look out for. A copy of a grammar
will refer to the original grammar’s Tokens object and ws rule. This is
not necessarily an issue: the ws rule and TokenParser instances can be
modified during the copy, and one can get hold of the Tokens instance
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via the embedded grammar’s instance, to extend it with new tokens, or
reuse it as-is.

A slightly more intricate pitfall is that a number of parsers take functional
interfaces as parameters, which are typically supplied as lambda functions.
These functions often capture values from the original grammar. If the
author of the grammar followed the framework’s guidelines and used
ParseState instances appropriately, this should be safe.

However, there is a case we cannot handle: if lambda functions capture
parsers from the original grammar, we have no way to replace them by
their copies. Therefore, the result probably won’t be what is expected.
We note that we have never needed to capture parsers in lambda functions,
and that the issue can always be avoided (by adding a layer of indirection)
if one has the foresight to consider that the grammar might be copied.

We would, in general, advise against performing grammar transforma-
tion if someting else (say a judiciously inserted custom parser) might
work instead. Nevertheless, making rewriting grammar copies opens up
interesting applications, and none more interesting than the ability to
perform grammar composition — which will be the object of Section 6.7.

6.5.7 Abstract Parsers

Section 6.5.4 showed how we made it very easy to make new parsers com-
patible with visitors. But can we not do even better? We have stripped
away all the boilerplate, but one still has to provide an implementation
for each (parser kind, visitor) pair.

Well, maybe not. We observed that not all parsers are meant to be reused.
Very often, we will develop parsers that will be specific to a particular
grammar. For instance, such is the case of the CloseTag parser in the
XML grammar of Section 5.6.4. In fact, this is typical of context-sensitive
parsers.

To help us, we introduced a series of abstract parsers: abstract classes
that can be extended to create new custom parsers. Each kind of parser
captures some kind of recurring combinator pattern, and helps in two
ways. First by providing default implementations of some abstract Parser
method (such as toStringFull for string representations). Second, they
enable specifying default visitor actions that have the potential to cover a
wide class of parsers. These actions can still be overriden when necessary.
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The bundled abstract parsers are:

• AbstractPrimitive: for parsers that have no sub-parsers and
match directly against the input. Its constructor expects a string
to be used as string representation of the parser, and a boolean
that indicates the nullability of the parser.

• AbstractWrapper: for parsers that have a single sub-parser, and
can match the same input as their sub-parsers (or a subset thereof).
Typically used for parsers that wrap another but add some kind of
context-sensitive guard.

• AbstractForwarding: for parsers that delegate their parsing to a
single sub-parser. This differs from AbstractWrapper in that the
doparse method is already implemented: this parser does exactly
the same thing as its sub-parser. The point of a forwarding parser
is two-fold. First it may help with debugging as this is a parser
whose name will appear in traces. Second and most importantly,
the parser serves as a “marker” of sort that may be used by some
visitors to enact specialized behaviour.

• AbstractChoice: for parsers that behave like a choice and can
match the same thing as any of their sub-parsers. Typically used
when context is used to enact the choice between these parsers.

6.5.8 Potential Further Applications

We have multiple ideas of how visitors and walkers could further be put
to work to implement interesting features.

Automatic Synthesis of Context-Object Extractors

Recall from Section 5.6.3 that mixing context-sensitive parsing and mem-
oization requires extracting a context object from the global context,
which is then used to discriminate between different memoized entries
for the same parser at the same input position. The user must define
an extractor function to perform this task. As we said, this breaks the
property of context transparency (Section 5.3): if a parser reachable by
the memoized parser becomes context-sensitive, the extractor needs to
change accordingly.

We could alleviate this issue by automatically synthesizing the extractors,
so as to guarantee that they always stay synchronized with the grammar.
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For this to work, we would need each parser to declare the context it
depends on.

A simple way to do this would be to have parsers specify local extractors,
which can be used to acquire local context objects. These local context
objects encapsulate the context that parser locally depends on (so the
context depended upon by their children need not be taken into account).
We can then write a parser walker to aggregate local extractors. From a
given memoized parser, the reachable parsers are traversed and their local
extractors are collected. They are then used to synthesize the memoized
parser’s extractor.

A potential pitfall is that multiple parsers can depend on the same context,
which could lead to duplication inside the context object. A possible
mitigation is to predefine and reuse frequently-used local extractors.

Parser Generation

In Section 6.1.5, we discussed performance issues resulting from the
abundance of megamorphic call sites in Autumn (and parser combinator
frameworks in general). The issue is that the combinator approach —
while it enables reification — incurs performance penalties in the form of
dispatch overheads at megamorphic call sites. These call sites, because of
their inherent indeterminacy, also preclude inlining — and subsequently
a lot of other optimization opportunities — from being applied by the
JVM.

However, using walkers and visitors makes it relatively easy to turn
Autumn into a parser generator. We need a visitor that generates relevant
parsing code for each parser, potentially reusing the code generated for its
sub-parsers. The walker is simply responsibly to ensure that the visitor is
run on all parsers in the proper order (the sub-parsers before the parent)
and handles recursion.

The simplest generation scheme is simply to generate for each parser
one method that contains the same code as the combination of its parse
and doparse methods, replacing sub-parsers invocations by call to the
methods generated for these sub-parsers. This removes the megamorphic
call sites and so unlocks optimization opportunities. From the theory and
results in the literature, we expect performance gains from this alone.

But it is possible to take things even further, by performing domain-
specific optimizations on the generated code. For instance, a lot of the
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logic defined in parse to handle backtracking is quite often redundant.
When generating, we can statically identify these cases and optimize
them (either on the fly, or as a post-processing step, using other walkers
and visitors). Other optimizations of this kind — such as automatic left-
factoring of shared prefixes in choice alternative — have been researched
by Robert Grimm and deployed in the parsing tool Rats! [31], with good
performance results.

Annotation-Driven Analysis & Generation

In general, interesting analyses and generations may require further
information on parsers that has to be provided somehow. Sometimes this
information only depends on the kind of parser (the subclass of Parser)
and then it can be provided by a visitor. But sometimes, the information
pertains to how parsers are used, and the user has to annotate parser
instances himself.

A good example is derivation of a syntax highlighter from a grammar:
the user has to specify what parts of the syntax has to be highlighted,
and how. Providing these annotations can be done in a variety of ways,
such as a map from Parser or even rule name to data; or as Java
language annotations, which can be retrieved by performing reflection
on the grammar class. Creating a new kind of parser that extends
AbstractForwarding (as discussed in Section 6.5.7) is also a good option.

6.6 Debugging & Tracing
Autumn comes outfitted with a couple features that make it easier
for grammar authors to ascertain that the resulting parser behaves as
expected, troubleshoot an incorrect grammar, and identify the cause of
lackluster performance.

We already saw one such tool in the form of the well-formedness check of
Section 6.5.5. And of course, error-reporting facilities double as debugging
facilities (Section 6.4). This section lays out the rest of what Autumn
has to offer to promote faster and safer grammar development.

6.6.1 Parser Invocation Stack Traces

One of Autumn’s essential debugging features is the ability to record
and inspect the stack of parser invocations. The Java runtime can also
supply stack traces, but these only indicate a (class, method) pair — so
the exact parser can’t be pinpointed. If the stack shows Sequence#parse
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1 Parse succeeded, consuming up to 31:5.

2 Furthest parse error at 31:13.

3 at 1:1 in root

4 at 1:1 in sequence(ws, maybe(package_decl),

5 import_decls, type_decls)

6 at 27:1 in type_decls

7 at 27:1 in repeat(choice(type_decl, SEMI), 0)

8 at 31:5 in choice(type_decl, SEMI)

9 at 31:5 in type_decl

10 at 31:13 in type_decl_suffix

Figure 6.5: Pretty-printed parser stack trace for a syntax error in a Java
file, involving an early closing curly bracket.

as one of its entries, that doesn’t tell you which sequence parser in your
grammar it refers to, nor at which input position it was invoked. Such a
stack trace also contains intermediate function calls which are irrelevant
to the purpose of debugging. In contrast, the parser invocation stack in
Autumn directly records parser objects, as well as the input positions at
which they were invoked.

The stack of parser invocations (henceforth: the parser call stack) is
analogous to the method call stack one can obtain from Java: it holds
every parser whose invocation is ongoing. Parser call stack recording is
an option that can be enabled for any parse. It is disabled by default, as
it is meant for users who want to troubleshoot an issue in their grammar,
and slows things down a fair bit.

When the option is activated, Autumn keeps track of the parser call stack
at any given time. It also keeps around a copy of the stack made when
the furthest error was encountered. This last stack can be accessed as
part of the parse results returned after a parse. Both the current parser
call stack and the furthest error parser call stack can also be accessed by
custom parsers, for further diagnosis during the parse. Autumn of course
supports pretty-printing parser stacks.

Figure 6.5 shows an example of pretty-printed parser call stack, using
our Java grammar (which is reproduced in Appendix A). In this case
the error is that a class body was closed too early. The class starts
at line 27, and ends before line 31. Consequently, the parser skips the
whitespace following the closing curly bracket, and tries to match another
type declaration (rule type_decl), but fails to do so. Note that it says
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“parse succeeded” because the parser was able to match a prefix of the
input (the package and import declarations).

Finally, we note that it is possible to only show parsers which correspond
to named rules in the grammar to further cut through the noise. In
Figure 6.5 this would be equivalent to removing the sequence, repeat
and choice parsers from the listing.

6.6.2 Custom Parsers for State Inspection

We said that a custom parser could access the parser call stack during
the parse. This is actually a common pattern: inject a custom parser
into the grammar to inspect the state of the parse as some parse is
executed. The easiest way to achieve this is to add a ContextPredicate

parser in a sequence. This parser takes a Parse → boolean function and
is normally intended to serve as a predicate over the context, but we can
use it to print out debugging information (or store it in some global data
structure), and then return true to proceed with the parse. Another
possibility is to set a debugging breakpoint in the function passed to the
combinator, which enables inspecting the parse state using the debugger
whenever the parser is invoked.

6.6.3 Testing Support

Building upon the foundation of parser stack traces (Section 6.6.1),
Autumn provides testing support which makes it easy to test a grammar
piece-wise, by defining inputs on which a given parser should succeed or
fail. It’s also possible to verify that the parse produces the correct AST,
or that it fails at the expect input position.

Testing support is implemented in the TestFixture class, which test
classes are supposed to extend. The implementation is compatible with
the JUnit TestNG testing frameworks. 29 The regular testing workflow is
to define the parser under consideration, then to invoke one of the testing
methods defined by TestFixture30:

• success(String) checks that the parser being tested succeeds mat-
ching the entirety of the given input.

29And probably with others too: we simply throw a standard AssertionError whenever
an assertion fails.

30In reality the methods can accept not just string inputs but also inputs that are lists
of objects.
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1 @Test public void literals()

2 {

3 rule = grammar.literal;

4
5 success_expect("4_2L", Literal.mk(4_2L));

6 success_expect(".42e42", Literal.mk(.42e42));

7 success_expect("0x8", Literal.mk(0x8));

8 success_expect("0x8p8", Literal.mk(0x8p8));

9 success_expect("0111", Literal.mk(0111));

10 success_expect("true", Literal.mk(true));

11 success_expect("false", Literal.mk(false));

12 success_expect("null", Literal.mk(Null.NULL));

13 // ...

14
15 failure("#");

16 failure("identifier");

17 failure("_42");

18 failure("42_");

19
20 success_expect(".42e-48f",

21 Literal.mk(new LexProblem("Float literal is too small.")));

22 // ...

23 }

Figure 6.6: A test method for literals in the Java grammar, using Au-
tumn’s testing facilities.

• success_expect(String, Object) also checks for success but addi-
tionally checks that the value at the top of value stack (Section 3.3.1)
is equal to the second parameter.

• prefix and prefix_expect are analogous to success and success_-

expect, but only require the parser to match a prefix of the input.

• failure(String) checks that the parser fails to match the entirety
of the given input.

• failure_at(String, int) checks that parser fails to match the
input, and also that the furthest error occurs at the given position
in the input.

Figure 6.6 shows a test method from the test suite for our Java grammar
(Appendix A). This method tests the syntax of literals. We start by
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setting the field rule to the literal rule of our Java grammar. The
assertion methods will automatically extract the parser to test from rule.
We follow this with a couple of inputs that should succeed, also specifying
the Literal AST node that should be generated. A couple of failing
inputs follow, as well as examples of syntactically valid literals which are
nevertheless forbidden by the Java language specification — in this case
we setup our grammar so that the a Literal node will still be generated,
but will wrap an object describing the problem instead of an actual value.

A specificity of the assertion methods is that, by default, they actually
parse the input twice and compare the two outcomes. The goal is to
detect issues that could arise from improper state manipulation — when
some program state is changed in a way that influences the parse, but
the proper change is not registered on the Log object of the parse. If
such a discrepancy occurs, the assertion will fail and report on it, listing
out the two different outcomes. It will also suggests that the underlying
issue might be parse state mishandling.

When using a testing framework such as TestNG or JUnit, a failed
assertion generates an exception that is caught by the framework in order
to display the location where the exception was thrown. However, in our
case this includes a few methods from the TestFixture class. What the
user is really interested in is the line in his test class where the failing
assertion method (success, failure, etc) appears. To get rid of the noise,
we actually rewrite the Java stack trace to remove these methods, so that
the first line of the stack trace refers to the failed assertion. As the user
may himself want to extend our test framework with helper methods, we
let him specify how many additional methods should be peeled off the
top of the stack trace.

6.6.4 Performance Tracing

After talking at length on how to make grammars correct, let’s talk briefly
about how to make them fast.

In Section 6.1.5, we talked about the overheads of the parsing framework
itself. But there is no denying that the shape of a grammar greatly influ-
ences its performance.31 Autumn is a backtracking parsing framework,
and when backtracking occurs, it means that work was done speculatively
— in other words, in vain. Anything that prevents backtracking is liable

31This is demonstrated for PEG in Section 6.1.2, and for ANTLR (and its two Java
grammars) in Section 6.2.1.
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to improve performance.

We saw that while Autumn (and PEG parsing in general) has exponen-
tial worst-case complexity, exponential behaviour just doesn’t seem to
happen in practice (Section 6.1.1). We also highlighted the only highly
inefficient pattern of backtracking we ever found while writing grammars
(Section 6.1.2). Finally, we saw that employing some custom memoiza-
tion on the bottom (lexical) layer of grammars can speed up parsing
dramatically (Section 6.2, Section 6.3).

What remains then is a more ordinary kind of inefficiency: maybe a
grammar rule is called particularly often, or maybe many rules share
a common prefix that is consequently re-tried many times at the same
input position. Whenever necessary, these issues can be fixed by applying
a memoization combinator (Section 6.1.4) or refactoring the grammar.

This leaves us with two major questions:

• How do I know I did not fall into one of the major performance
pitfalls or miss one of the major optimization opportunities?

• Where are the remaining “ordinary” optimization opportunities?

These questions essentially boil down to “Where are the slow parsers?”
Unfortunately, we can’t resort to using a traditional tracing tool for this
purpose. A tracing tool will, predictably, tell you that the code spends
most of its time in Parser#parse, in a couple of doparse methods for
common parsers (Sequence, Choice, ...), and in some primitive string
comparison methods. But this doesn’t tell us which parsers are the ones
affected!32

To nevertheless answer the question, Autumn offers a tracing mode, in
which performance metrics are recorded for each parser in the grammar.
In particular, we record the following three metrics:

• Cumulative total time: the total time spent in the parser (in its

32The problem is similar to the one we encountered with Java stack traces — methods
don’t uniquely identify parsers.
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parse and doparse methods).33

• Cumulative self time: the total time spent in the parser minus the
time spent in its sub-parsers.

• Number of invocations: the number of time the parser was invoked
(this includes recursive invocations, as it well should).

Of the three, the number of invocations is the most useful. It tells you
which parsers are hot and called often. If the hot parsers are not those
you expect, investigate. These parsers are prime targets for memoization.

The cumulative self time is useful to ferret out the parsers whose logic
itself is slow. You can additionally compute the average time spent per
invocation by dividing this number by the number of invocations.

Finally, the cumulative total time is the least useful measure: the root
parser of the grammar will always take 100% of the parse time. Never-
theless, this measure can be useful to find low-level parsers that take a
lot of time by virtue of invoking a lot of different sub-parsers. It’s also
great for visualizing where the parse time is spent, for instance using
flame graphs [30].

Tracing does have a cost: enabling our tracing code on our Java bench-
mark (using the Java grammar with lexical analysis emulation — see
Section 6.2) slows it by a factor of 9. We should also note that, while we
take care not to exclude time spent in the metrics-recording code, just the
fact of actually running the metrics-recording code impacts the run time
significantly, by means of cache pollution and missed JIT optimization
opportunities. In fact, in our Java benchmark, the reported cumulative
time of all parses is 5 times superior to the time that a non-tracing run
would take.

6.7 Grammar Composition
Ideally, we would like to be able to reuse existing grammars, i.e., to
compose them. The term “compose” is very vague, and so we’ll consider

33We take care to not double-count the time spent in recursive parsers. This could
happen if we increment the total time spent by the time spent in a recursive call,
then increment it again by the time spent in the non-recursive call, which overlaps
with the recursive call.
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multiple concrete scenarios in turn.

The first and simplest scenario involves language embedding. We simply
want to define a new grammar that uses another grammar as a component.
This is trivial in Autumn, it suffices to refer to parsers of the old grammar
in the new grammar — the result being an extended parse graph. The
old grammar is still usable on its own too.

There are actually two slightly different ways to perform this form of
composition: by inheritance or by object composition. If the new gram-
mar class extends the old grammar class, rules from the old and new
grammar will share their Tokens object (cf. Section 6.3), and will share
a simple ws whitespace rule (cf. Section 3.1.2). If the two languages have
different lexical or whitespace requirements, then you should perform
object composition instead: your new grammar includes a field that stores
an instance of the old grammar, which is used to refer to the rules of the
old grammar.

In a second, more complex scenario, we want to customize language
embedding so that the embedded language may refer back to the host
language. This is more difficult: as we have said previously, the parser
graph is immutable.

We already hinted at the solution in Section 6.5.6: we can deep-copy the
old grammar’s parser graph using a CopyVisitor, and apply modifications
during the copy. In our scenario, we would perform a copy of the
embedded grammar, modifying it to refer back to some rules of the host
grammar, and finally refer to the copy from the host grammar.

A grammar copy is in many ways similar to the object composition
method in the first scenario: the copy will refer to the original embedded
grammar’s Tokens object and ws rule. As we explained in Section 6.5.6,
this is not necessarily an issue, but remains something to be aware of.

You may wonder how we can make the embedded and host grammar
refer to one another in this scenario. We use the same trick we used to
handle recursion in monolithic grammars: use a lazy parser along with
an indirect reference (cf. Section 3.1.3).

Finally, in a third scenario we have two existing grammars that we want
to compose together so that they refer to each other. This scenario is
very similar to the second one, except we are not the author of the second
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grammar. Here, we want to create a third grammar that will serve as
host for the composition. Then, we simply create modified copies of
both grammars with a CopyVisitor. The new host grammar can also
include glue rules to further extend the composition. We can even further
compose such composed grammars together!

In closing, let’s briefly discuss the theoretical properties of such composi-
tions. Both PEGs and CFGs are closed under composition, and so are
Autumn grammars. However, composing PEGs is liable to introduce
prefix capture, while composing CFGs is liable to introduce ambiguity.
See Section 2.1.2 for a discussion of ambiguity and Section 2.4.3 for a
discussion of prefix capture, and how the two concepts relate to each other.
We know that predicting prefix capture and ambiguity is undecidable in
general [81]. Autumn, just like PEG, is liable to prefix capture. How-
ever, composition only tends to be problematic when pervasive mixing is
attempted. For instance, trying to merge the expression syntax of two
languages is going to be fraught with peril. In other cases, the result of a
composition tends to be fairly predictable.

6.8 Conclusion
This chapter covered a lot of ground, from an extensive discussion of
performance considerations in combinator parsing, to support for lexical
analysis, debugging tracing, error-recovery and error-reporting strate-
gies; as well as an examination of the possibilities opened up by parser
reification and the built-in traversal and visitor facilities.

What we hope to have shown is that Autumn does not merely possess nice
expressiveness properties (left-recursion, infix expression parsing, context-
sensitivity) but is also a fully-featured practical parsing tool — one that
is fast but also user-friendly, debuggable, and of course extensible.

Something we emphasized all along this chapter is that these features
and improvements were not built despite Autumn’s extensibility, but
thanks to it. As the underlying extensible architecture has served us so
well in tackling these challenges, we are confident it will scale well to new
challenges and use cases we did not foresee.

Finally, this chapter goes into a lot of the nitty gritty details of parser
engineering. It reports on a lot of knowledge that is often left unspoken
or merely hinted at in conference hallways or internet comment sections,
and very rarely finds its way to published papers. We are proud to have
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given it the consideration it deserves, as we think there is a lot to be
gained by disseminating it more broadly. For instance, we don’t think
that even the majority of parsing tool authors have a good handle on
what makes a parser fast (or more pointedly, slow). This isn’t due to
incompetence, but merely ignorance. And admittedly, not everyone has
the luxury of doing a PhD on parsing to acquire the relevant knowledge.
But once acquired, this knowledge can be disseminated, and this chapter
is our contribution to that endeavour.





Chapter 7

Conclusions and Future
Directions

Simplicity and Flexibility
We started this thesis by setting an ambitious objective: finding the sweet
spot between the simplicity and declarativeness of grammarware and the
flexibility of ad-hoc parsing; and developing a well-engineered and easy
to use solution in that space.

To achieve this goal, we outlined a series of capabilities which we believe
a good solution should possess — ways to manifest both the flexibility
and simplicity properties.

In this concluding chapter, we would simply like to go over these criteria
and show how they were addressed in the thesis.

The flexibility capabilities:

1. The ability to extend the parsing system with new combinators.

2. The ability to create new primitive parsers.

These two capabilities are easy to integrate in a top-down recursive-
descent combinator parser approach. We explained how parsers are
defined in Autumn in Section 3.2.

217
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3. Full control over the generation of the syntax trees.

Control over ASTs is realized through the manipulation of the value
stack via a number of built-in AST-building parsers (cf. Section 3.3).
The value stack itself is a form of parse state that is underpinned
by the log mechanism presented in Section 5.6.

4. Allowance for a wide variety of context-sensitive features in the
language’s syntax and generated syntax trees.

Context-sensitivity is the object of the whole of Chapter 5.

5. The ability to customize the error-reporting strategy and the re-
ported error messages.

We show how Autumn supports implementing error-reporting and
error-recovery strategies in Section 6.4, where we also present a few
such strategies.

6. The ability to compose independently-developed grammars.

Grammar composition is the object of Section 6.7.

7. The reification (availability for programmatic inspection) of the
grammar.

The support for grammar reification is demonstrated in Section 6.5,
in the form of parser walkers in visitors. We also show practical
applications of these capabilities (the well-formedness check and
the copy visitor).

8. Sufficient performance for parsers to be practically usable.

As demonstrated by the performance comparison of Section 6.2.

The simplicity capabilities:

1. The grammar should be readable, in order to avoid maintaining a
separate language description.

The reader can judge of this by herself, by inspecting the intro-
ductory grammars of Section 3.1 and Section 3.3 as well as the



219

complete Java grammar listed in Appendix A.

2. The system should, as much as possible, be devoid of counter-
intuitive pitfalls. In general, the simple way should be the right
way.

This is important concern and was an ongoing theme, but is per-
haps most readily apparent in our treatment of the different infix
expression parsing solutions of Chapter 4, and in our Section 6.5
efforts to find a friendly to let users extend existing parser visitors.

3. The system should cover, using a limited number of built-in primi-
tives, most common parsing use-cases.

The built-in parsers available in Autumn cover a strict superset
of the PEG semantics. Noteworthy additions include the longest-
match parser, lexical analysis emulation (Section 6.3), the bounded
parser (Section 6.4.5), and the left-recursive and infix expression
parsers of Chapter 4.

4. The system’s principles should be simple and easy to understand
so that it is simple to extend and customize.

The basic concepts of Autumn were presented in Chapter 3, and
most features introduced afterwards were simply built on top of this
simple foundation. The major exception being the context-sensitive
system, embodied by a log of undoable actions, which is introduced
in Section 5.6.

5. The reification of the grammar should be easy to manipulate.

Achieving this through the use of parser visitors and walkers is the
object of Section 6.5.

We believe it fair to say that we have addressed every capability in the
list in a way that is more than satisfactory. The result is a not just a
prototype with a couple of nice theoretical properties, but a cohesive
parsing tool that can be used in practical real-world scenarios and can
compete with both state-of-the-art and battle-tested tools in both feature
set and performance.

More importantly, we were able to do so without sacrificing too much
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simplicity nor too much flexibility. The trade-off proved to be a bargain.

As a matter of fact, in the part of the design space that Autumn occupies,
simplicity and flexibility are not so much at odds as they are in symbiosis.
In many ways, Autumn is flexible because it is simple: advanced features
can be built over a simple set of primitive operations and principles.
Autumn’s advanced capabilities can co-exist and even interact because
their semantics is transparently defined in terms of this simple base layer.
But Autumn is also simple because it is flexible: by leaving advanced
capabilities out of the core layer, they can be tackled orthogonally without
needing to revise the foundations on which the tool is built.

Future Direction
We certainly met the goals we set for our tool, but is everything perfect
nonetheless? What can still be improved?

There are a couple of Autumn features that could not have been added
by a user, most notably the support for recording the parser call stack
(Section 6.6.1) and for tracing (Section 6.6.4). The implementations of
both of these require code to be run at the start and at the end of the
Parser#parse method. We could consider introducing some sort of parser
plugin feature as a means to let user run code in these locations.

While Section 6.4 presents multiple possible error-reporting and error-re-
covery strategies, we have not actually tried them out in practice. The
section does explain how we would go about validating these strategies
(using a corpus of errors). Identifying effective error-handling strategies
could lead us to abstracting and packaging them in Autumn, which would
further simplify the task of users.

Another area of potential improvement is Autumn’s support for lexical
analysis (Section 6.3). While it simplifies things a good deal by alleviating
the need to carefully order rules to reproduce longest-matching seman-
tics and manually inserting memoization combinators, the performance
comparison of Section 6.2 shows it still incurs a big performance penalty
compared to the hand-optimized case. To quote ourselves:

More research is required to determine if we can preserve the con-
venience of obtaining longest-match semantics by simply marking
token rules, while closing the performance gap with the hand-
optimized case.



221

We also think we can improve grammar composition (Section 6.7). While
the underlying support for composition is solid, we only examined the idea
fairly recently, and its practical deployment could probably benefit from
some more research in order to reduce friction and minimize boilerplate.

Finally, Section 6.5.8 lists further possible applications of reification. We
are particularly interested in pursuing automatic synthesis of context-
object extractors, as well as making Autumn capable of generating par-
sers. Not only would the latter allow increased performance via reduced
overheads and the possibility of domain-specific optimizations, it could
also enable generating parsers in different languages, making Autumn
usable beyond the JVM environment.

Final Word
We hope that this thesis has shown the potential of principled procedural
parsing, and of striving to improve the status quo with better trade-offs
— no matter the area.

We are proud of what was achieved. We find Autumn useful yet elegant,
and many of the insights presented in this thesis valuable in practice. We
hope that readers will come to share some of these feelings.

The work of these past couple of years was not always a joy, but it was
most of time. Completing it, and having produced something interesting
to show for it is all I could have asked for.
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Appendix A

Autumn Java 8 Grammar

This appendix contains a complete listing of one of Autumn’s Java 8
grammar, namely the one which uses Autumns’s support for lexical
analysis emulation (cf. Section 6.3). This grammar was used to obtain
Autumn’s performance measurements in Section 6.2.

1 package norswap.lang.java;

2
3 import norswap.autumn.DSL;

4 import norswap.autumn.StackAction;

5 import norswap.lang.java.ast.*;

6 import norswap.lang.java.ast.TypeDeclaration.Kind;

7 import norswap.utils.Pair;

8
9 import static java.util.Collections.emptyList;

10 import static norswap.lang.java.LexUtils.*;

11 import static norswap.lang.java.ast.BinaryOperator.*;

12 import static norswap.lang.java.ast.UnaryOperator.*;

13
14 public final class Grammar extends DSL

15 {

16 /// LEXICAL ========================================================================

17
18 // Whitespace ----------------------------------------------------------------------

19
20 public rule space_char = cpred(Character::isWhitespace);

21 public rule not_line = seq(str("\n").not(), any);

22 public rule line_comment = seq("//", not_line.at_least(0), str("\n").opt());

23
24 public rule not_comment_term = seq(str("*/").not(), any);

25 public rule multi_comment = seq("/*", not_comment_term.at_least(0), "*/");

26
27 { ws = choice(space_char, line_comment, multi_comment).at_least(0); }
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28
29 // Keywords and Operators ----------------------------------------------------------

30
31 public rule _boolean = word("boolean") .token();

32 public rule _byte = word("byte") .token();

33 public rule _char = word("char") .token();

34 public rule _double = word("double") .token();

35 public rule _float = word("float") .token();

36 public rule _int = word("int") .token();

37 public rule _long = word("long") .token();

38 public rule _short = word("short") .token();

39 public rule _void = word("void") .token();

40 public rule _abstract = word("abstract") .token();

41 public rule _default = word("default") .token();

42 public rule _final = word("final") .token();

43 public rule _native = word("native") .token();

44 public rule _private = word("private") .token();

45 public rule _protected = word("protected") .token();

46 public rule _public = word("public") .token();

47 public rule _static = word("static") .token();

48 public rule _strictfp = word("strictfp") .token();

49 public rule _synchronized = word("synchronized") .token();

50 public rule _transient = word("transient") .token();

51 public rule _volatile = word("volatile") .token();

52 public rule _assert = word("assert") .token();

53 public rule _break = word("break") .token();

54 public rule _case = word("case") .token();

55 public rule _catch = word("catch") .token();

56 public rule _class = word("class") .token();

57 public rule _const = word("const") .token();

58 public rule _continue = word("continue") .token();

59 public rule _do = word("do") .token();

60 public rule _else = word("else") .token();

61 public rule _enum = word("enum") .token();

62 public rule _extends = word("extends") .token();

63 public rule _finally = word("finally") .token();

64 public rule _for = word("for") .token();

65 public rule _goto = word("goto") .token();

66 public rule _if = word("if") .token();

67 public rule _implements = word("implements") .token();

68 public rule _import = word("import") .token();

69 public rule _interface = word("interface") .token();

70 public rule _instanceof = word("instanceof") .token();

71 public rule _new = word("new") .token();

72 public rule _package = word("package") .token();

73 public rule _return = word("return") .token();

74 public rule _super = word("super") .token();

75 public rule _switch = word("switch") .token();

76 public rule _this = word("this") .token();

77 public rule _throws = word("throws") .token();

78 public rule _throw = word("throw") .token();

79 public rule _try = word("try") .token();

80 public rule _while = word("while") .token();

81
82 // Names are taken from the javac8 lexer.

83 // Ordering matters when there are shared prefixes!

84
85 public rule BANG = word("!") .token();
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86 public rule BANGEQ = word("!=") .token();

87 public rule PERCENT = word("%") .token();

88 public rule PERCENTEQ = word("%=") .token();

89 public rule AMP = word("&") .token();

90 public rule AMPAMP = word("&&") .token();

91 public rule AMPEQ = word("&=") .token();

92 public rule LPAREN = word("(") .token();

93 public rule RPAREN = word(")") .token();

94 public rule STAR = word("*") .token();

95 public rule STAREQ = word("*=") .token();

96 public rule PLUS = word("+") .token();

97 public rule PLUSPLUS = word("++") .token();

98 public rule PLUSEQ = word("+=") .token();

99 public rule COMMA = word(",") .token();

100 public rule SUB = word("-") .token();

101 public rule SUBSUB = word("--") .token();

102 public rule SUBEQ = word("-=") .token();

103 public rule EQ = word("=") .token();

104 public rule EQEQ = word("==") .token();

105 public rule QUES = word("?") .token();

106 public rule CARET = word("^") .token();

107 public rule CARETEQ = word("^=") .token();

108 public rule LBRACE = word("{") .token();

109 public rule RBRACE = word("}") .token();

110 public rule BAR = word("|") .token();

111 public rule BARBAR = word("||") .token();

112 public rule BAREQ = word("|=") .token();

113 public rule TILDE = word("~") .token();

114 public rule MONKEYS_AT = word("@") .token();

115 public rule DIV = word("/") .token();

116 public rule DIVEQ = word("/=") .token();

117 public rule GTEQ = word(">=") .token();

118 public rule LTEQ = word("<=") .token();

119 public rule LTLTEQ = word("<<=") .token();

120 public rule LTLT = word("<<") .token();

121 public rule GTGTEQ = word(">>=") .token();

122 public rule GTGTGTEQ = word(">>>=") .token();

123 public rule GT = word(">") .token();

124 public rule LT = word("<") .token();

125 public rule LBRACKET = word("[") .token();

126 public rule RBRACKET = word("]") .token();

127 public rule ARROW = word("->") .token();

128 public rule COL = word(":") .token();

129 public rule COLCOL = word("::") .token();

130 public rule SEMI = word(";") .token();

131 public rule DOT = word(".") .token();

132 public rule ELLIPSIS = word("...") .token();

133
134 // These two are not tokens, because they would cause issue with

135 // nested generic types.

136 // e.g. in List<List<String>>, you want ">>" to lex as [GT, GT]

137
138 public rule GTGT = word(">>");

139 public rule GTGTGT = word(">>>");

140
141 public rule _false = word("false") .as_val(false) .token();

142 public rule _true = word("true") .as_val(true) .token();

143 public rule _null = word("null") .as_val(Null.NULL) .token();
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144
145 // Identifiers ---------------------------------------------------------------------

146
147 public rule id_start = cpred(Character::isJavaIdentifierStart);

148 public rule id_part = cpred(c -> c != 0 && Character.isJavaIdentifierPart(c));

149
150 public rule iden = seq(id_start, id_part.at_least(0))

151 .push(with_string((p,xs,str) -> Identifier.mk(str)))

152 .word()

153 .token();

154
155 // Numerals - Common Parts ---------------------------------------------------------

156
157 public rule underscore = str("_");

158 public rule dlit = str(".");

159 public rule hex_prefix = choice("0x", "0X");

160 public rule underscores = underscore.at_least(0);

161 public rule digits1 = digit.sep(1, underscores);

162 public rule digits0 = digit.sep(0, underscores);

163 public rule hex_digits = hex_digit.sep(1, underscores);

164 public rule hex_num = seq(hex_prefix, hex_digits);

165
166 // Numerals - Floating Point -------------------------------------------------------

167
168 public rule hex_significand = choice(

169 seq(hex_prefix, hex_digits.opt(), dlit, hex_digits),

170 seq(hex_num, dlit.opt()));

171
172 public rule exp_sign_opt = set("+-").opt();

173 public rule exponent = seq(set("eE"), exp_sign_opt, digits1);

174 public rule binary_exponent = seq(set("pP"), exp_sign_opt, digits1);

175 public rule float_suffix = set("fFdD");

176 public rule float_suffix_opt = float_suffix.opt();

177
178 public rule hex_float_lit =

179 seq(hex_significand, binary_exponent, float_suffix_opt);

180
181 public rule decimal_float_lit = choice(

182 seq(digits1, dlit, digits0, exponent.opt(), float_suffix_opt),

183 seq(dlit, digits1, exponent.opt(), float_suffix_opt),

184 seq(digits1, exponent, float_suffix_opt),

185 seq(digits1, exponent.opt(), float_suffix));

186
187 public rule float_literal = choice(hex_float_lit, decimal_float_lit)

188 .push(with_string((p,xs,str) -> parse_floating(str).unwrap()))

189 .token();

190
191 // Numerals - Integral -------------------------------------------------------------

192
193 public rule bit = set("01");

194 public rule binary_prefix = choice("0b", "0B");

195
196 public rule binary_num =

197 seq(binary_prefix, bit.at_least(1).sep(1, underscores));

198
199 public rule octal_num =

200 seq("0", seq(underscores, octal_digit).at_least(1));

201
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202 public rule decimal_num =

203 choice("0", digits1);

204
205 public rule integer_num =

206 choice(hex_num, binary_num, octal_num, decimal_num);

207
208 public rule integer_literal = seq(integer_num, set("lL").opt())

209 .push(with_string((p,xs,str) -> parse_integer(str).unwrap()))

210 .token();

211
212 // Characters and Strings ----------------------------------------------------------

213
214 public rule octal_code_3 = seq(range(’0’, ’3’), octal_digit, octal_digit);

215 public rule octal_code_2 = seq(octal_digit, octal_digit.opt());

216 public rule octal_code = choice(octal_code_3, octal_code_2);

217 public rule unicode_code = seq(str("u").at_least(1), hex_digit.repeat(4));

218 public rule escape_suffix = choice(set("btnfr\"’\\"), octal_code, unicode_code);

219 public rule escape = seq("\\", escape_suffix);

220 public rule naked_char = choice(escape, seq(set("’\\\n\r").not(), any));

221 public rule nake_str_char = choice(escape, seq(set("\"\\\n\r").not(), any));

222
223 public rule char_literal = seq("’", naked_char, "’")

224 .push(with_string((p,xs,str) -> parse_char(str).unwrap()))

225 .token();

226
227 public rule string_literal = seq("\"", nake_str_char.at_least(0), "\"")

228 .push(with_string((p,xs,str) -> parse_string(str).unwrap()))

229 .token();

230
231 // Literal -------------------------------------------------------------------------

232
233 public rule literal = token_choice(

234 integer_literal, string_literal, _null,

235 float_literal, _true, _false, char_literal)

236 .word()

237 .push(xs -> Literal.mk(xs[0]));

238
239 //// LAZY FORWARD REFS =============================================================

240
241 public rule _stmt =

242 lazy(() -> this.stmt);

243
244 public rule _expr =

245 lazy(() -> this.expr);

246
247 public rule _block =

248 lazy(() -> this.block);

249
250 /// ANNOTATIONS ====================================================================

251
252 public rule annotation_element = choice(

253 lazy(() -> this.ternary_expr),

254 lazy(() -> this.annotation_element_list),

255 lazy(() -> this.annotation));

256
257 public rule annotation_inner_list =

258 lazy(() -> this.annotation_element).sep_trailing(0, COMMA);

259
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260 public rule annotation_element_list =

261 seq(LBRACE, annotation_inner_list, RBRACE)

262 .push(xs -> AnnotationElementList.mk(list(xs)));

263
264 public rule annotation_element_pair =

265 seq(iden, EQ, annotation_element)

266 .push(xs -> new Pair<Identifier, AnnotationElement>($(xs,0), $(xs,1)));

267
268 public rule normal_annotation_suffix =

269 seq(LPAREN, annotation_element_pair.sep(1, COMMA), RPAREN)

270 .push(with_parse((p,xs) -> NormalAnnotation.mk($(p.stack.pop()), list(xs))));

271
272 public rule single_element_annotation_suffix =

273 seq(LPAREN, annotation_element, RPAREN)

274 .collect().lookback(1).push(xs -> SingleElementAnnotation.mk($(xs,0), $(xs,1)));

275
276 public rule marker_annotation_suffix =

277 seq(LPAREN, RPAREN).opt()

278 .collect().lookback(1).push(xs -> MarkerAnnotation.mk($(xs,0)));

279
280 public rule annotation_suffix = choice(

281 normal_annotation_suffix,

282 single_element_annotation_suffix,

283 marker_annotation_suffix);

284
285 public rule qualified_iden =

286 iden.sep(1, DOT)

287 .collect().as_list(Identifier.class);

288
289 public rule annotation =

290 seq(MONKEYS_AT, qualified_iden, annotation_suffix);

291
292 public rule annotations =

293 annotation.at_least(0)

294 .collect().as_list(TAnnotation.class);

295
296 /// TYPES ==========================================================================

297
298 public rule basic_type =

299 token_choice(_byte, _short, _int, _long, _char, _float, _double, _boolean, _void)

300 .push(with_string(

301 (p,xs,str) -> BasicType.valueOf("_" + trim_trailing_whitespace(str))));

302
303 public rule primitive_type =

304 seq(annotations, basic_type)

305 .push(xs -> PrimitiveType.mk($(xs,0), $(xs,1)));

306
307 public rule extends_bound =

308 seq(_extends, lazy(() -> this.type))

309 .push(xs -> ExtendsBound.mk($(xs,0)));

310
311 public rule super_bound =

312 seq(_super, lazy(() -> this.type))

313 .push(xs -> SuperBound.mk($(xs,0)));

314
315 public rule type_bound =

316 choice(extends_bound, super_bound).maybe();

317
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318 public rule wildcard =

319 seq(annotations, QUES, type_bound)

320 .push(xs -> Wildcard.mk($(xs,0), $(xs,1)));

321
322 public rule opt_type_args =

323 seq(LT, choice(lazy(() -> this.type), wildcard).sep(0, COMMA), GT).opt()

324 .collect().as_list(TType.class);

325
326 public rule class_type_part =

327 seq(annotations, iden, opt_type_args)

328 .push(xs -> ClassTypePart.mk($(xs, 0), $(xs, 1), $(xs, 2)));

329
330 public rule class_type =

331 class_type_part.sep(1, DOT)

332 .push(xs -> ClassType.mk(list(xs)));

333
334 public rule stem_type =

335 choice(primitive_type, class_type);

336
337 public rule dim =

338 seq(annotations, seq(LBRACKET, RBRACKET))

339 .push(xs -> Dimension.mk($(xs,0)));

340
341 public rule dims =

342 dim.at_least(0)

343 .collect().as_list(Dimension.class);

344
345 public rule dims1 =

346 dim.at_least(1)

347 .collect().as_list(Dimension.class);

348
349 public rule type_dim_suffix =

350 dims1

351 .collect().lookback(1).push(xs -> ArrayType.mk($(xs,0), $(xs,1)));

352
353 public rule type =

354 seq(stem_type, type_dim_suffix.opt());

355
356 public rule type_union_syntax =

357 lazy(() -> this.type).sep(1, AMP);

358
359 public rule type_union =

360 type_union_syntax

361 .collect().as_list(TType.class);

362
363 public rule type_bounds =

364 seq(_extends, type_union_syntax).opt()

365 .collect().as_list(TType.class);

366
367 public rule type_param =

368 seq(annotations, iden, type_bounds)

369 .push(xs -> TypeParameter.mk($(xs,0), $(xs,1), $(xs,2)));

370
371 public rule type_params =

372 seq(LT, type_param.sep(0, COMMA), GT).opt()

373 .collect().as_list(TypeParameter.class);

374
375 /// EXPRESSIONS ====================================================================
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376
377 // Initializers --------------------------------------------------------------------

378
379 public rule var_init =

380 choice(_expr, lazy(() -> this.array_init));

381
382 public rule array_init =

383 seq(LBRACE, var_init.sep_trailing(0, COMMA), RBRACE)

384 .push(xs -> ArrayInitializer.mk(list(xs)));

385
386 // Array Constructor ---------------------------------------------------------------

387
388 public rule dim_expr =

389 seq(annotations, LBRACKET, _expr, RBRACKET)

390 .push(xs -> DimExpression.mk($(xs,0), $(xs,1)));

391
392 public rule dim_exprs =

393 dim_expr.at_least(1)

394 .collect().as_list(DimExpression.class);

395
396 public rule dim_expr_array_creator =

397 seq(stem_type, dim_exprs, dims)

398 .push(xs -> ArrayConstructorCall.mk($(xs,0), $(xs,1), $(xs,2), null));

399
400 public rule init_array_creator =

401 seq(stem_type, dims1, array_init)

402 .push(xs -> ArrayConstructorCall.mk($(xs,0), emptyList(), $(xs,1), $(xs,2)));

403
404 public rule array_ctor_call =

405 seq(_new, choice(dim_expr_array_creator, init_array_creator));

406
407 // Lambda Expression ---------------------------------------------------------------

408
409 public rule lambda = lazy(() ->

410 seq(this.lambda_params, ARROW, choice(this.block, this.expr)))

411 .push(xs -> Lambda.mk($(xs,0), $(xs,1)));

412
413 // Expression - Primary ------------------------------------------------------------

414
415 public rule args =

416 seq(LPAREN, _expr.sep(0, COMMA), RPAREN)

417 .collect().as_list(Expression.class);

418
419 public rule par_expr =

420 seq(LPAREN, _expr, RPAREN)

421 .push(xs -> ParenExpression.mk($(xs,0)));

422
423 public rule ctor_call =

424 seq(_new, opt_type_args, stem_type, args, lazy(() -> this.type_body).maybe())

425 .push(xs -> ConstructorCall.mk($(xs,0), $(xs,1), $(xs,2), $(xs,3)));

426
427 public rule new_ref_suffix =

428 _new

429 .collect().lookback(2).push(xs -> NewReference.mk($(xs,0), $(xs,1)));

430
431 public rule method_ref_suffix =

432 iden

433 .collect().lookback(2)
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434 .push(xs -> TypeMethodReference.mk($(xs,0), $(xs,1), $(xs,2)));

435
436 public rule ref_suffix =

437 seq(COLCOL, opt_type_args, choice(new_ref_suffix, method_ref_suffix));

438
439 public rule class_expr_suffix =

440 seq(DOT, _class)

441 .collect().lookback(1).push(xs -> ClassExpression.mk($(xs,0)));

442
443 public rule type_suffix_expr =

444 seq(type, choice(ref_suffix, class_expr_suffix));

445
446 public rule iden_or_method_expr =

447 seq(iden, args.maybe())

448 .push(xs -> $(xs,1) == null

449 ? $(xs,

450 : MethodCall.mk(null, list(), $(xs,0), $(xs,1)));

451
452 public rule this_expr =

453 seq(_this, args.maybe())

454 .push(xs -> $(xs,0) == null ? This.mk() : ThisCall.mk($(xs,0)));

455
456 public rule super_expr =

457 seq(_super, args.maybe())

458 .push(xs -> $(xs,0) == null ? Super.mk() : SuperCall.mk($(xs,0)));

459
460 public rule primary_expr = choice(

461 lambda, par_expr, array_ctor_call, ctor_call, type_suffix_expr,

462 iden_or_method_expr, this_expr, super_expr, literal);

463
464 // Expression - Postfix & Prefix ---------------------------------------------------

465
466 public rule prefix_op = choice(

467 PLUSPLUS .as_val(PREFIX_INCREMENT),

468 SUBSUB .as_val(PREFIX_DECREMENT),

469 PLUS .as_val(UNARY_PLUS),

470 SUB .as_val(UNARY_MINUS),

471 TILDE .as_val(BITWISE_COMPLEMENT),

472 BANG .as_val(LOGICAL_COMPLEMENT));

473
474 public rule postfix_expr = left_expression()

475 .left(primary_expr)

476 .suffix(seq(DOT, opt_type_args, iden, args),

477 xs -> MethodCall.mk($(xs,0), $(xs,1), $(xs,2), $(xs,3)))

478 .suffix(seq(DOT, iden),

479 xs -> DotIden.mk($(xs,0), $(xs,1)))

480 .suffix(seq(DOT, _this),

481 xs -> UnaryExpression.mk(DOT_THIS, $(xs,0)))

482 .suffix(seq(DOT, _super),

483 xs -> UnaryExpression.mk(DOT_SUPER, $(xs,0)))

484 .suffix(seq(DOT, ctor_call),

485 xs -> DotNew.mk($(xs,0), $(xs,1)))

486 .suffix(seq(LBRACKET, _expr, RBRACKET),

487 xs -> ArrayAccess.mk($(xs,0), $(xs,1)))

488 .suffix(PLUSPLUS,

489 xs -> UnaryExpression.mk(POSTFIX_INCREMENT, $(xs,0)))

490 .suffix(SUBSUB,

491 xs -> UnaryExpression.mk(POSTFIX_DECREMENT, $(xs,0)))
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492 .suffix(seq(COLCOL, opt_type_args, iden),

493 xs -> BoundMethodReference.mk($(xs,0), $(xs,1), $(xs,2)))

494 .get();

495
496 public rule prefix_expr = recursive(self -> choice(

497 seq(prefix_op, self)

498 .push(xs -> UnaryExpression.mk($(xs,0), $(xs,1))),

499 seq(LPAREN, type_union, RPAREN, self)

500 .push(xs -> Cast.mk($(xs,0), $(xs,1))),

501 postfix_expr));

502
503 // Expression - Binary -------------------------------------------------------------

504
505 StackAction.Push binary_push =

506 xs -> BinaryExpression.mk($(xs,1), $(xs,0), $(xs,2));

507
508 public rule mult_op = choice(

509 STAR .as_val(MULTIPLY),

510 DIV .as_val(DIVIDE),

511 PERCENT .as_val(REMAINDER));

512
513 public rule add_op = choice(

514 PLUS .as_val(ADD),

515 SUB .as_val(SUBTRACT));

516
517 public rule shift_op = choice(

518 LTLT .as_val(LEFT_SHIFT),

519 GTGTGT .as_val(UNSIGNED_RIGHT_SHIFT),

520 GTGT .as_val(RIGHT_SHIFT));

521
522 public rule order_op = choice(

523 LT .as_val(LESS_THAN),

524 LTEQ .as_val(LESS_THAN_EQUAL),

525 GT .as_val(GREATER_THAN),

526 GTEQ .as_val(GREATER_THAN_EQUAL));

527
528 public rule eq_op = choice(

529 EQEQ .as_val(EQUAL_TO),

530 BANGEQ .as_val(NOT_EQUAL_TO));

531
532 public rule assignment_op = choice(

533 EQ .as_val(ASSIGNMENT),

534 PLUSEQ .as_val(ADD_ASSIGNMENT),

535 SUBEQ .as_val(SUBTRACT_ASSIGNMENT),

536 STAREQ .as_val(MULTIPLY_ASSIGNMENT),

537 DIVEQ .as_val(DIVIDE_ASSIGNMENT),

538 PERCENTEQ .as_val(REMAINDER_ASSIGNMENT),

539 LTLTEQ .as_val(LEFT_SHIFT_ASSIGNMENT),

540 GTGTEQ .as_val(RIGHT_SHIFT_ASSIGNMENT),

541 GTGTGTEQ .as_val(UNSIGNED_RIGHT_SHIFT_ASSIGNMENT),

542 AMPEQ .as_val(AND_ASSIGNMENT),

543 CARETEQ .as_val(XOR_ASSIGNMENT),

544 BAREQ .as_val(OR_ASSIGNMENT));

545
546 public rule mult_expr = left_expression()

547 .operand(prefix_expr)

548 .infix(mult_op, binary_push).get();

549
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550 public rule add_expr = left_expression()

551 .operand(mult_expr)

552 .infix(add_op, binary_push).get();

553
554 public rule shift_expr = left_expression()

555 .operand(add_expr)

556 .infix(shift_op, binary_push).get();

557
558 public rule order_expr = left_expression()

559 .operand(shift_expr)

560 .suffix(seq(_instanceof, type),

561 xs -> InstanceOf.mk($(xs,0), $(xs,1)))

562 .infix(order_op, binary_push)

563 .get();

564
565 public rule eq_expr = left_expression()

566 .operand(order_expr)

567 .infix(eq_op, binary_push).get();

568
569 public rule binary_and_expr = left_expression()

570 .operand(eq_expr)

571 .infix(AMP.as_val(AND), binary_push).get();

572
573 public rule xor_expr = left_expression()

574 .operand(binary_and_expr)

575 .infix(CARET.as_val(XOR), binary_push).get();

576
577 public rule binary_or_expr = left_expression()

578 .operand(xor_expr)

579 .infix(BAR.as_val(OR), binary_push).get();

580
581 public rule conditional_and_expr = left_expression()

582 .operand(binary_or_expr)

583 .infix(AMPAMP.as_val(CONDITIONAL_AND), binary_push).get();

584
585 public rule conditional_or_expr = left_expression()

586 .operand(conditional_and_expr)

587 .infix(BARBAR.as_val(CONDITIONAL_OR), binary_push).get();

588
589 public rule ternary_expr = right_expression()

590 .operand(conditional_or_expr)

591 .infix(seq(QUES, _expr, COL),

592 xs -> TernaryExpression.mk($(xs,0), $(xs,1), $(xs,2)))

593 .get();

594
595 public rule expr = right_expression()

596 .operand(ternary_expr)

597 .infix(assignment_op, binary_push).get();

598
599 /// MODIFIERS ======================================================================

600
601 public rule keyword_modifier = token_choice(

602 _public, _protected, _private, _abstract, _static, _final, _synchronized,

603 _native, _strictfp, _default, _transient, _volatile)

604 .push(with_string(

605 (p,xs,str) -> Keyword.valueOf("_" + trim_trailing_whitespace(str))));

606
607 public rule modifier =
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608 choice(annotation, keyword_modifier);

609
610 public rule modifiers =

611 modifier.at_least(0)

612 .collect().as_list(Modifier.class);

613
614 /// PARAMETERS =====================================================================

615
616 public rule this_parameter_qualifier =

617 seq(iden, DOT).at_least(0)

618 .collect().as_list(String.class);

619
620 public rule this_param_suffix =

621 seq(this_parameter_qualifier, _this)

622 .collect().lookback(2)

623 .push(xs -> ThisParameter.mk($(xs,0), $(xs,1), $(xs,2)));

624
625 public rule iden_param_suffix =

626 seq(iden, dims)

627 .collect().lookback(2)

628 .push(xs -> IdenParameter.mk($(xs,0), $(xs,1), $(xs,2), $(xs,3)));

629
630 public rule variadic_param_suffix =

631 seq(annotations, ELLIPSIS, iden)

632 .collect().lookback(2)

633 .push(xs -> VariadicParameter.mk($(xs,0), $(xs,1), $(xs,2), $(xs,3)));

634
635 public rule formal_param_suffix =

636 choice(iden_param_suffix, this_param_suffix, variadic_param_suffix);

637
638 public rule formal_param =

639 seq(modifiers, type, formal_param_suffix);

640
641 public rule formal_params =

642 seq(LPAREN, formal_param.sep(0, COMMA), RPAREN)

643 .push(xs -> FormalParameters.mk(list()));

644
645 public rule untyped_params =

646 seq(LPAREN, iden.sep(1, COMMA), RPAREN)

647 .push(xs -> UntypedParameters.mk(list()));

648
649 public rule single_param =

650 iden

651 .push(xs -> UntypedParameters.mk(list(xs)));

652
653 public rule lambda_params =

654 choice(formal_params, untyped_params, single_param);

655
656 /// NON-TYPE DECLARATIONS ==========================================================

657
658 public rule var_declarator_id =

659 seq(iden, dims)

660 .push(xs -> VarDeclaratorID.mk($(xs,0), $(xs,1)));

661
662 public rule var_declarator =

663 seq(var_declarator_id, seq(EQ, var_init).maybe())

664 .push(xs -> VarDeclarator.mk($(xs,0), $(xs,1)));

665
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666 public rule var_declarators =

667 var_declarator.sep(1, COMMA)

668 .collect().as_list(VarDeclarator.class);

669
670 public rule var_decl_suffix_no_semi =

671 seq(type, var_declarators)

672 .collect().lookback(1)

673 .push(xs -> VarDeclaration.mk($(xs,0), $(xs,1), $(xs,2)));

674
675 public rule var_decl_suffix =

676 seq(var_decl_suffix_no_semi, SEMI);

677
678 public rule var_decl =

679 seq(modifiers, var_decl_suffix);

680
681 public rule throws_clause =

682 seq(_throws, type.sep(1, COMMA)).opt()

683 .collect().as_list(TType.class);

684
685 public rule block_or_semi =

686 choice(_block, SEMI.as_val(null));

687
688 public rule method_decl_suffix =

689 seq(type_params, type, iden, formal_params, dims, throws_clause, block_or_semi)

690 .collect().lookback(1)

691 .push(xs -> MethodDeclaration.mk(

692 $(xs,0), $(xs,1), $(xs,2), $(xs,3), $(xs,4), $(xs,5), $(xs,6), $(xs,7)));

693
694 public rule constructor_decl_suffix =

695 seq(type_params, iden, formal_params, throws_clause, _block)

696 .collect().lookback(1)

697 .push(xs -> ConstructorDeclaration.mk(

698 $(xs,0), $(xs,1), $(xs,2), $(xs,3), $(xs,4), $(xs,5)));

699
700 public rule init_block =

701 seq(_static.as_bool(), _block)

702 .push(xs -> InitBlock.mk($(xs,0), $(xs,1)));

703
704 /// TYPE DECLARATIONS ==============================================================

705
706 // Common --------------------------------------------------------------------------

707
708 public rule extends_clause =

709 seq(_extends, type.sep(0, COMMA)).opt()

710 .collect().as_list(TType.class);

711
712 public rule implements_clause =

713 seq(_implements, type.sep(0, COMMA)).opt()

714 .collect().as_list(TType.class);

715
716 public rule type_sig =

717 seq(iden, type_params, extends_clause, implements_clause);

718
719 public rule class_modifierized_decl = seq(

720 modifiers,

721 choice(

722 var_decl_suffix,

723 method_decl_suffix,
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724 constructor_decl_suffix,

725 lazy(() -> this.type_decl_suffix)));

726
727 public rule class_body_decl =

728 choice(class_modifierized_decl, init_block, SEMI);

729
730 public rule class_body_decls =

731 class_body_decl.at_least(0)

732 .collect().as_list(Declaration.class);

733
734 public rule type_body =

735 seq(LBRACE, class_body_decls, RBRACE);

736
737 // Enum ----------------------------------------------------------------------------

738
739 public rule enum_constant =

740 seq(annotations, iden, args.maybe(), type_body.maybe())

741 .push(xs -> EnumConstant.mk($(xs,0), $(xs,1), $(xs,2), $(xs,3)));

742
743 public rule enum_class_decls =

744 seq(SEMI, class_body_decl.at_least(0)).opt();

745
746 public rule enum_constants =

747 enum_constant.sep(1, COMMA).opt();

748
749 public rule enum_body =

750 seq(LBRACE, enum_constants, enum_class_decls, RBRACE)

751 .collect().as_list(Declaration.class);

752
753 public rule enum_decl_suffix =

754 seq(_enum, type_sig, enum_body)

755 .collect().lookback(1)

756 .push(xs -> TypeDeclaration.mk(Kind.ENUM,

757 $(xs,0), $(xs,1), $(xs,2), $(xs,3), $(xs,4), $(xs,5)));

758
759 // Annotations ---------------------------------------------------------------------

760
761 public rule annot_default_clause =

762 seq(_default, annotation_element)

763 .push(xs -> $(xs,0));

764
765 public rule annot_elem_decl =

766 seq(modifiers, type, iden, LPAREN, RPAREN, dims,

767 annot_default_clause.maybe(), SEMI)

768 .push(xs -> AnnotationElementDeclaration.mk(

769 $(xs,0), $(xs,1), $(xs,2), $(xs,3), $(xs,4)));

770
771 public rule annot_body_decls =

772 choice(annot_elem_decl, class_body_decl).at_least(0)

773 .collect().as_list(Declaration.class);

774
775 public rule annotation_decl_suffix =

776 seq(MONKEYS_AT, _interface, type_sig, LBRACE, annot_body_decls, RBRACE)

777 .collect().lookback(1)

778 .push(xs -> TypeDeclaration.mk(Kind.ANNOTATION,

779 $(xs,0), $(xs,1), $(xs,2), $(xs,3), $(xs,4), $(xs,5)));

780
781 //// -------------------------------------------------------------------------------
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782
783 public rule class_decl_suffix =

784 seq(_class, type_sig, type_body)

785 .collect().lookback(1)

786 .push(xs -> TypeDeclaration.mk(Kind.CLASS,

787 $(xs,0), $(xs,1), $(xs,2), $(xs,3), $(xs,4), $(xs,5)));

788
789 public rule interface_declaration_suffix =

790 seq(_interface, type_sig, type_body)

791 .collect().lookback(1)

792 .push(xs -> TypeDeclaration.mk(Kind.INTERFACE,

793 $(xs,0), $(xs,1), $(xs,2), $(xs,3), $(xs,4), $(xs,5)));

794
795 public rule type_decl_suffix = choice(

796 class_decl_suffix,

797 interface_declaration_suffix,

798 enum_decl_suffix,

799 annotation_decl_suffix);

800
801 public rule type_decl =

802 seq(modifiers, type_decl_suffix);

803
804 public rule type_decls =

805 choice(type_decl, SEMI).at_least(0)

806 .collect().as_list(Declaration.class);

807
808 /// STATEMENTS =====================================================================

809
810 public rule if_stmt =

811 seq(_if, par_expr, _stmt, seq(_else, _stmt).maybe())

812 .push(xs -> IfStatement.mk($(xs,0), $(xs,1), $(xs,2)));

813
814 public rule expr_stmt_list =

815 expr.sep(0, COMMA)

816 .collect().as_list(Statement.class);

817
818 public rule for_init_decl =

819 seq(modifiers, var_decl_suffix_no_semi)

820 .collect().as_list(Statement.class);

821
822 public rule for_init =

823 choice(for_init_decl, expr_stmt_list);

824
825 public rule basic_for_paren_part =

826 seq(for_init, SEMI, expr.maybe(), SEMI, expr_stmt_list.opt());

827
828 public rule basic_for_stmt =

829 seq(_for, LPAREN, basic_for_paren_part, RPAREN, _stmt)

830 .push(xs -> BasicForStatement.mk($(xs,0), $(xs,1), $(xs,2), $(xs,3)));

831
832 public rule for_val_decl =

833 seq(modifiers, type, var_declarator_id, COL, expr);

834
835 public rule enhanced_for_stmt =

836 seq(_for, LPAREN, for_val_decl, RPAREN, _stmt)

837 .push(xs ->

838 EnhancedForStatement.mk($(xs,0), $(xs,1), $(xs,2), $(xs,3), $(xs,4)));

839
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840 public rule while_stmt =

841 seq(_while, par_expr, _stmt)

842 .push(xs -> WhileStatement.mk($(xs,0), $(xs,1)));

843
844 public rule do_while_stmt =

845 seq(_do, _stmt, _while, par_expr, SEMI)

846 .push(xs -> DoWhileStatement.mk($(xs,0), $(xs,1)));

847
848 public rule catch_parameter_types =

849 type.sep(0, BAR)

850 .collect().as_list(TType.class);

851
852 public rule catch_parameter =

853 seq(modifiers, catch_parameter_types, var_declarator_id);

854
855 public rule catch_clause =

856 seq(_catch, LPAREN, catch_parameter, RPAREN, _block)

857 .push(xs -> CatchClause.mk($(xs,0), $(xs,1), $(xs,2), $(xs,3)));

858
859 public rule catch_clauses =

860 catch_clause.at_least(0)

861 .collect().as_list(CatchClause.class);

862
863 public rule finally_clause =

864 seq(_finally, _block);

865
866 public rule resource =

867 seq(modifiers, type, var_declarator_id, EQ, expr)

868 .push(xs -> TryResource.mk($(xs,0), $(xs,1), $(xs,2), $(xs,3)));

869
870 public rule resources =

871 seq(LPAREN, resource.sep(1, SEMI), RPAREN).opt()

872 .collect().as_list(TryResource.class);

873
874 public rule try_stmt =

875 seq(_try, resources, _block, catch_clauses, finally_clause.maybe())

876 .push(xs -> TryStatement.mk($(xs,0), $(xs,1), $(xs,2), $(xs,3)));

877
878 public rule default_label =

879 seq(_default, COL)

880 .push(xs -> DefaultLabel.mk());

881
882 public rule case_label =

883 seq(_case, expr, COL)

884 .push(xs -> CaseLabel.mk($(xs,0)));

885
886 public rule switch_label =

887 choice(case_label, default_label);

888
889 public rule switch_clause =

890 seq(switch_label, lazy(() -> this.statements))

891 .push(xs -> SwitchClause.mk($(xs,0), $(xs,1)));

892
893 public rule switch_stmt =

894 seq(_switch, par_expr, LBRACE, switch_clause.at_least(0), RBRACE)

895 .push(xs -> SwitchStatement.mk($(xs,0), list(1, xs)));

896
897 public rule synchronized_stmt =
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898 seq(_synchronized, par_expr, _block)

899 .push(xs -> SynchronizedStatement.mk($(xs,0), $(xs,1)));

900
901 public rule return_stmt =

902 seq(_return, expr.maybe(), SEMI)

903 .push(xs -> ReturnStatement.mk($(xs,0)));

904
905 public rule throw_stmt =

906 seq(_throw, expr, SEMI)

907 .push(xs -> ThrowStatement.mk($(xs,0)));

908
909 public rule break_stmt =

910 seq(_break, iden.maybe(), SEMI)

911 .push(xs -> BreakStatement.mk($(xs,0)));

912
913 public rule continue_stmt =

914 seq(_continue, iden.maybe(), SEMI)

915 .push(xs -> ContinueStatement.mk($(xs,0)));

916
917 public rule assert_stmt =

918 seq(_assert, expr, seq(COL, expr).maybe(), SEMI)

919 .push(xs -> AssertStatement.mk($(xs,0), $(xs,1)));

920
921 public rule semi_stmt =

922 SEMI

923 .push(xs -> SemiStatement.mk());

924
925 public rule expr_stmt =

926 seq(expr, SEMI);

927
928 public rule labelled_stmt =

929 seq(iden, COL, _stmt)

930 .push(xs -> LabelledStatement.mk($(xs,0), $(xs,1)));

931
932 public rule stmt = choice(

933 _block,

934 if_stmt,

935 basic_for_stmt,

936 enhanced_for_stmt,

937 while_stmt,

938 do_while_stmt,

939 try_stmt,

940 switch_stmt,

941 synchronized_stmt,

942 return_stmt,

943 throw_stmt,

944 break_stmt,

945 continue_stmt,

946 assert_stmt,

947 semi_stmt,

948 expr_stmt,

949 labelled_stmt,

950 var_decl,

951 type_decl);

952
953 public rule block =

954 seq(LBRACE, stmt.at_least(0), RBRACE)

955 .push(xs -> Block.mk(list(xs)));
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956
957 public rule statements =

958 stmt.at_least(0)

959 .collect().as_list(Statement.class);

960
961 /// TOP-LEVEL ======================================================================

962
963 public rule package_decl =

964 seq(annotations, _package, qualified_iden, SEMI)

965 .push(xs -> PackageDeclaration.mk($(xs,0), $(xs,1)));

966
967 public rule import_decl =

968 seq(_import, _static.as_bool(), qualified_iden, seq(DOT, STAR).as_bool(), SEMI)

969 .push(xs -> ImportDeclaration.mk($(xs,0), $(xs,1), $(xs,2)));

970
971 public rule import_decls =

972 import_decl.at_least(0)

973 .collect().as_list(ImportDeclaration.class);

974
975 public rule root =

976 seq(ws, package_decl.maybe(), import_decls, type_decls)

977 .push(xs -> JavaFile.mk($(xs,0), $(xs,1), $(xs,2)));

978
979 // =================================================================================

980
981 { make_rule_names(); }

982 }
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