
SDLoad: An Extensible Framework
for SDN Workload Generation

Nicolas Laurent Stefano Vissicchio∗ Marco Canini
Université catholique de Louvain

<name.surname>@uclouvain.be

ABSTRACT
We propose a unified approach for workload generation to
ease evaluation and comparison of SDN control-plane pro-
posals. Our approach is based on SDLoad, an extensible
framework capable of generating custom workloads satisfy-
ing input constraints, along user-defined evaluation axes.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques;
D.2.5 [Software Engineering]: Testing tools

Keywords
SDN; workload generation; evaluation; benchmarking

1. INTRODUCTION
To be practically usable in real-world networks, the SDN

control plane needs to provide a highly available, correct and
performant service. Recent research work has proposed sev-
eral SDN control-plane designs, including support for elastic
behavior [2], middleware layers [1] and network operating
systems [3, 5]. As such, the SDN control plane is quickly
becoming a sophisticated software stack whose behavior is
determined by many interacting components.

Unfortunately, an accurate evaluation and a comparative
analysis of different proposals and configurations of the SDN
control plane is hard to achieve. A major limiting factor in
this context is the absence of common baselines and easy-to-
use workloads that mimic a range of heterogeneous network
conditions. This is partially due to the limitations of the
few existing SDN control-plane testing tools, like Cbench [6],
or commercial solutions (e.g., Ixia’s IxNetwork or Spirent’s
TestCenter). Indeed, those tools can only produce workloads
of predefined types (e.g., OpenFlow rules), which hampers
the testing of arbitrary SDN control-plane components.

∗Stefano Vissicchio is a postdoctoral researcher of the Bel-
gian fund for scientific research (F.R.S.-FNRS).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
HotSDN’14, August 22, 2014, Chicago, IL, USA.
ACM 978-1-4503-2989-7/14/08.
http://dx.doi.org/10.1145/2620728.2620771 .

Workload	
Units	

Workload	
Constraint	

Evalua2on	
Axes	

SDLoad

Feeder	 CuT	 Results

Figure 1: Overview of our approach for workload genera-
tion for an arbitrary Component under Test (CuT). Once
the user has identified his workload units and the axes along
which they may vary, she only has to write an SDLoad con-
straint to obtain a working parameterized workload genera-
tor; whereas previously she would have had to code ad-hoc
generators from scratch.

In this work, we propose an approach to enable a com-
mon ground for comparison and consequently improve re-
producibility of research by creating a suite of useful bench-
marks. The key component of our approach is SDLoad, a
novel software framework supporting workload generation
for a wide range of SDN control-plane components. Beyond
that, SDLoad is designed to be extensible, hence enabling
the user to finely craft complex workloads for new or future
SDN components. We believe that our contribution rep-
resents a significant step towards a rigorous measurement-
based evaluation of SDN control-plane architectures.

2. TOWARDS A UNIFIED APPROACH TO
SDN WORKLOAD GENERATION

At a high level, an experimental evaluation of SDN
control-plane components should run the Component under
Test (CuT) against a wide range of workloads. Those work-
loads should represent relevant control-plane events, rang-
ing from high-level changes (e.g., policy updates) to new
network conditions (e.g., device failures) and time-related
events (e.g., timer expirations). This way, properties of both
the control-plane computation (e.g., time consumed or com-
munication overhead) and its outcome (e.g., number of pro-
duced rules, time needed to install them on the switches,
and so on) can be experimentally assessed.

In this work, we make a first step towards a unified ap-
proach for rapid, reliable evaluation of SDN control-plane
components. The goal is to establish a uniform approach
to the assessment of SDN control-plane proposals and their
comparison in a range of different networking settings.

An overview of our approach is presented in Fig. 1. The
key component is the artificial generation of workloads for
arbitrary CuTs. This is implemented by our SDLoad tool,
which performs all the input generation operations that are
common across the evaluation of different CuTs.

To be as generic as possible, we define an SDN workload
as a sequence of temporally-related groups of workload units.
The workload units are application-specific. Depending on
the CuT, they can indeed represent concepts at different lev-
els of abstraction, from OpenFlow rules to network policies.
Their definition is left to the user, who has to identify (i)
workload constraints, expressing structure and consistency
properties of inputs to the CuT, and (ii) evaluation axes
along which inputs differ to model a given networking sce-
nario (potentially including statistical distributions). If nei-
ther workload constraints nor evaluation axes are provided,
SDLoad can also be used to systematically explore the in-
put space (e.g., to expose the behavior of the system with
unexpected input).

Once workload units are defined, SDLoad implements a
generic generation process that ensures the output workload
complies with the given constraints while randomizing its
elements along the specified evaluation axes. Since some
CuTs may need a custom generation process (e.g., to comply
with specific workload constraints), we design SDLoad with
extensibility goals in mind.

3. SDLOAD
SDLoad is implemented as a Java library of about 6,000

lines of code, and it is publicly available at https://

bitbucket.org/norswap/sdload. We now describe its main
features that support our workload generation approach.
Domain Specific Language (DSL). To define workload
constraints and evaluation axes, SDLoad provides a small
DSL, based on Java methods. The SDLoad DSL enables
users to specify generator and constraint objects. The core
of the DSL is formed by a set of core methods that re-
turn a new constraint. Core methods can take parameters,
some of which may themselves be constraints. Secondary
methods can then be invoked on constraints in order to
customize them further. Secondary methods always return
the constraint on which they were called, so that they can
be chained freely (e.g., core().secondary().secondary()).
Some secondary methods can only be called on certain kinds
of constraints (e.g., constraints representing a list), while
others can be called on all constraints.

Fig. 2 shows an example of a simple constraint defini-
tion. In the figure, list, dict, choice and anyOf are core
methods, while key is a secondary method specific to the
dict core method, and or is specific to choice. SDLoad
always generates a hierarchy of lists and dictionaries with
key strings, so the list and dict methods are especially
important. There are secondary methods to constraint the
size of the list, and secondary methods to add constraints
on the dictionary’s keys and values. To express workload
unit distributions (e.g., timings), relative probabilities of al-
ternative constraints can be expressed through the choice

construct; e.g., choice().or(0.1, value("a")).or(0.9,

value("b")) constrains the input to be either “a” or “b”
with 10% and 90% probability, respectively.
Workflow. The user is required to provide, through
the DSL interface, a top-level constraint characterizing the
workload to be generated, as well as an associated genera-

Constraint networkEvents =
l i s t (choice ()

. or (0 . 1 , dict ()
.key (“type”, anyOf(

value (“switch up”) ,
value (“switch down”)))

.key (“switch”, SwitchGenerator . c on s t r a i n t))
. or (0 . 9 , dict ()

.key (“type”, value (“packe t in”))

.key (“from”, SwitchGenerator . c on s t r a i n t)

.key (“header”, sdnModel . heade rF i e ld s))
)) . s ize (nbEventsToGenerate) ;

Figure 2: A simple constraint definition example illustrating
the SDLoad domain specific language. This example models
a set of network events to which a controller may wish to
react. There are events representing switches going up or
down, as well as events representing “packet-ins”: packets
transferred to the controller by a switch.

tor. This constraint can reference sub-constraints and, in the
same fashion, the generator can reference sub-generators.

To support SDN workload generation, SDLoad bundles
pre-defined constraints, generators and other utilities. They
include a topology layer, which can load network topologies
from .graphml files. The topology layer manages the switch
IDs and port numbers, and offers functions to compute
both shortest and random paths between pairs of switches.
SDLoad also includes a set of constraints and generators
that model OpenFlow messages and their constitutive parts
(matching criteria, forwarding actions, etc.).

SDLoad supplies the generated input in a format that is
agnostic to any binary format or language’s object model,
namely as a hierarchy of lists and dictionaries with key
strings, which can be serialized in JSON. The conversion
of SDLoad output to input for the CuT is left to data for-
mat translators (represented by the Feeder block in Fig. 1),
which is external to SDLoad.
Experiences. We successfully used SDLoad to experiment
with recently proposed control-plane components, namely
(i) ESPRES, a scheduler taking as input groups of inter-
dependent OpenFlow commands [4], and (ii) an algorithm
to order forwarding updates while preserving network-wide
connectivity [7]. The corresponding constraints used in our
experiments are available in the SDLoad source code.

Acknowledgments. This work was (partially) supported
by the ARC grant 13/18-054 from Communauté française
de Belgique.

4. REFERENCES
[1] M. Canini et al. Software Transactional Networking:

Concurrent and Consistent Policy Composition. In
HotSDN, 2013.

[2] A. Dixit et al. Towards an Elastic Distributed SDN
Controller. In HotSDN, 2013.

[3] ON.LAB. ONOS: Open Network Operating System. In
ONS, 2014.

[4] P. Pereš́ıni et al. ESPRES: Easy Scheduling and
Prioritization for SDN. In ONS, 2014.

[5] T. Koponen et al. Onix: A distributed control platform
for large-scale production networks. In OSDI, 2010.

[6] A. Tootoonchian et al. On Controller Performance in
Software-defined Networks. In Hot-ICE, 2012.

[7] S. Vissicchio et al. Safe Update of Hybrid SDN
Networks. Technical report, UCLouvain, 2013.

https://bitbucket.org/norswap/sdload
https://bitbucket.org/norswap/sdload

	Introduction
	Towards a Unified Approach to SDN Workload Generation
	SDLoad
	References

