
Red Shift: Procedural Shift-Reduce Parsing
(Vision Paper)

Nicolas Laurent
ICTEAM

Université catholique de Louvain, Belgium
nicolas.laurent@uclouvain.be

Abstract
Red Shift is a new design pattern for implementing parsers.
The pattern draws ideas from traditional shift-reduce parsing
as well as procedural PEG parsers. Red Shift parsers behave
like shift-reduce parsers, but eliminate ambiguity by always
prioritizing reductions over shifts. To compensate the result-
ing lack of expressivity, reducers are not simple reduction
rules but full-blown procedures written in a general-purpose
host language. I found many advantages to this style of pars-
ing. In particular, we can generate high-quality error mes-
sages more easily; and compose different style of parsers.
I also speculate about how Red Shift parsers may improve
partial compilation in the context of an IDE.

CCSConcepts • Software and its engineering→Parsers;

Keywords parsing, parsers, pattern
ACM Reference Format:
Nicolas Laurent. 2017. Red Shift: Procedural Shift-Reduce Parsing
(Vision Paper). In Proceedings of 2017 ACM SIGPLAN International
Conference on Software Language Engineering (SLE’17). ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3136014.3136036

1 Introduction
Parsing tools such as parser combinator libraries [3] and
parser generators are well established among practicing pro-
grammers. Parsing combinator libraries are popular for sim-
ple parsing tasks that exceed the capabilities of regular ex-
pressions. Language workbenches [1] enable deriving whole

Nicolas Laurent is a research fellow of the Belgian fund for scientific research
(F.R.S.-FNRS).
For Manon, with love.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5525-4/17/10. . . $15.00
https://doi.org/10.1145/3136014.3136036

development environments for simple domain specific lan-
guages, based on a set of specifications. Yet when it comes
to writing compilers for general-purpose languages, pro-
grammers often eschew parsing tools in favour of ad-hoc
parsers1.
Yet ad-hoc parsers are far from perfect, and it certainly

is less easy to write your own parser than it is to write a
grammar for an existing tool. Why are programmers willing
to put up with the additional pain? Based on my own expe-
rience and on many discussions with fellow programmers, I
believe this is not due to lack of awareness about the tools,
nor to the not-invented-here syndrome. Instead, there are two
main factors that steer compiler authors away from parsing
tools.

Error-reporting. Upon failure, most parsing tools report
vague errors — indicating the best guess for the error location,
but not much more.

Lack of control. Parsing tools are typically built around
formalisms such as Context-Free Grammar (CFG) or Pars-
ing Expression Grammar (PEG) [2], which leave little space
for context-sensitive syntax such as significant whitespace,
user-defined operators or length-delimited fields [5]. Lack of
control also manifests as lack of flexibility in abstract parse
tree construction.

Both problems have been recognized and tackled to some
extent, albeit never in concert. Maidl et al. add labelled failure
to the PEG formalism, as well as the ability to use these labels
to influence the semantics of the choice operator [6]. These
features allow retooling a PEG so that its parser generates
errors more closely matching users’ expectations. My own
prior work extends the PEG formalism to enable context-
sensitive parsing, while enforcing a strong safety contract.
That paper also includes a discussion of the context-sensitive
parsing literature [5]. Because Red Shift does not feature
backtracking and makes the context available implicitly, it is
exempt from the issues tackled in that paper.

This paper presents a new pattern for writing ad-hoc
parsers. Using this pattern goes a long way to alleviate the
pain incurred by the two factors identified above, while
1Among the top 20 open source programming languages in the TIOBE
popularity index, only Rubymakes use of a parsing tool. Hobbyist languages
do not fare much better.

38

https://doi.org/10.1145/3136014.3136036
https://doi.org/10.1145/3136014.3136036

SLE’17, October 23–24, 2017, Vancouver, Canada Nicolas Laurent

avoiding the traditional pitfalls of traditional ad-hoc parsers
(which we describe in the next sub-section).

1.1 Ad-Hoc Recursive Descent Parsers
Ad-hoc parsers are overwhelmingly written in the top-down
recursive descent style. These parsers have well-known pit-
falls: left-recursion handling is awkward, and handling op-
erator precedence is thorny [7]. Ad-hoc recursive descent
parsers enable writing better error reports, and implement-
ing context-sensitive features; but they do not make it easy.
We now review a few notable implications of using ad-hoc
recursive descent parsers.

Error-reporting. Using ad-hoc parsing, programmers can
write custom error-reporting code; but generating good parse
errors requires keeping track of the context in which the
error occurs. By default, recursive descent parsers encode
this context inside call stack frames, which means that it is
not immediately available at the error detection site.
Taking a step back, it is already non-trivial to determine

the nature of the error, when faced with an invalid input.
This notably occurs with disjunction constructs, for instance
when we attempt to match a method declaration, or a field
declaration, or a constructor declaration. If none of the al-
ternatives succeed, what to report? Can we infer what alter-
native was meant by the user? This problem is endemic to
parsing tools, and using an ad-hoc parser does not make it
vanish magically. However, in some cases the programmer
may now disambiguate the error’s origin, using his knowl-
edge of the language’s grammar.

It is also not obvious what steps to take after an error has
been detected. When an error occurs in a syntactic unit (e.g.
an expression), this leaves all outer syntactic units (e.g. a
statement, a function declaration, a class declaration) poten-
tially hanging. There are two options for dealing with these
situations.
The naive approach is to abort the parse as soon as an

error is encountered. The alternative is to use recovery rules
to skip the erroneous part of the input and resynchronize
the parse, in order not to hinder the matching of the outer
syntactic units. To do so, two main strategies exist. The first
is to associate the recovery rules to the error detection code
— in order to resynchronize the parse immediately after an
error is encountered. The second strategy is to associate
the recovery rules with syntactic units. For instance, when
a compound statement delimited by curly braces is faced
with an error in one of its components, it may skip ahead
to the closing curly brace. These strategies work, but are
hard to deploy sytematically — it takes a lot of finesse to
determine how to implement the appropriate strategy. They
also hurt transparency: explaining the observed behaviour
of the parser now requires explaining all recovery rules.

Lack of control. With ad-hoc parsers, programmers are able
to parse context-sensitive syntax, but doing so requires the

use of a global context. Programmers must take great care
to preserve the context’s integrity in the presence of back-
tracking [5]; and recursive descent parsing makes heavy use
of backtracking.

Performance. Ad-hoc parsing mostly ensures good perfor-
mance, but some traps lurk for the unwary. For instance,
it is easy to end up with an operator-handling algorithm
that is exponential, if one tries to emulate how operators are
handled in CFG2, and disregards existing algorithms [7].

Reuse and composition. While ad-hoc recursive descent
parsing has benefits, it also foregoes many benefits of tradi-
tional parsing tools. One of the appeals of parsing combinator
libraries is the ability to write and combine reusable parsing
components. Some libraries go further and enable the defi-
nition of custom combinators [3, 5]. Ad-hoc parsers, as the
name implies, have no such capabilities. Because each parser
has its own architecture and data structures, even manually
porting components may prove difficult.

Red Shift parsers do not solve all the problems of ad-hoc
parsers. For instance, they do not provide facilities to inte-
grate with formal grammars. By definition, ad-hoc parsers
aren’t automatically derived from a formal grammar, even
though such a grammar may exist and serve as reference. An
ad-hoc parser is not an adequate description of the language
syntax for an end-user; and establishing the adequation of
the parser to the grammar is non-trivial.

1.2 Inspirations
The pattern we propose in the next section draws from three
main sources of inspirations.

Shift-Reduce Parsing. Shift-reduce parsers consume an in-
put stream (usually made of tokens) linearly, without back-
tracking. As the parse proceeds, the parser builds up a parse
tree. A stack data structure is used as temporary storage
for parse tree nodes. At each step of the parse, the parser
must choose between a shift action: consuming an item from
the stream and pushing it on the stack; or a reduce action:
combining multiple items at the top of the stack. The parser
makes this decision based on the content of the stack and a
few tokens of lookahead.

Parsing Expression Grammars. PEGs are a formalization
of top-down recursive descent parsers [2], making it some-
what of a trade-off betweeen ad-hoc recursive descent parsers
and the CFG formalism. As a formalism, PEG has a few in-
teresting properties. First, it is unambiguous: a PEG only
ever admits a single derivation tree for each input. PEGs
are also recognition-based, describing in essence a predicate
that can be applied to any input to test its membership in
the described language. CFGs, on the other hand, describe
how to generate every input that belongs to the language.
2The author has been bitten by this in the past.

39

Red Shift: Procedural Shift-Reduce Parsing SLE’17, October 23–24, 2017, Vancouver, Canada

1 inputs
2 reducers: List[Reducer]
3 token: Queue[Token]

4 context = new Context()
5 stack = new Stack()
6 while !tokens.is_empty() do
7 stack.push(tokens.dequeue())
8 outer: while true do
9 for reducer in reducers do

10 if reducer.reduce(context, stack, tokens) then
11 continue outer

12 break

Algorithm 1: Core loop of a Red Shift parser.

Said otherwise, PEG is more procedural, while CFG is more
declarative. The obvious implementaion of PEG’s semantics
is very close to recursive descent parsers, making it easy to
extend with custom code [5].

A parser is not a recognizer. It is uncontroversial to say
that the role of a parser is to superimpose structure over
a linear input. However, the idea that a parser should only
accept syntactically valid inputs is also prevalent. This idea
was probably inherited from formal language theory. After
all, the role of a grammar is to describe the sentences (inputs)
that belong to a language. As parsers are often specified with
grammars, it is not surprising that the idea seeped through.

However, I argue that the idea that a parser should reject
syntactically invalid inputs is actually harmful to the first
mission of parsers: imposing structure. If a perfectly recog-
nizable syntactic unit (say a function definition) appears in
a context where it is not allowed (say in another function
definition, as in C or Java), it is perfectly reasonable to parse
it anyway: the unit can be clearly recognized.

This emphasis on structure comes with two benefits. First,
it may help writing simpler parsers, as most syntactic units
may now be recognized globally, not only in specific con-
texts. Second, it leads to much better error messages: after
generating a syntax tree, we can inspect it for conformity and
use the context supplied by the rest of the tree in our report.
The difference I have in mind here is the difference between
the error messages “Unexpected token: abstract” and “The
abstract modifier is not allowed for field declarations”.

2 Description of the Pattern
This section describes the Red Shift design pattern. It is not
an algorithm or a library, but rather away to organize parsing
code in a way that yields numerous benefits. After a succint
description of the core idea, I will present a number of ways
in which the pattern can be exploited.

Core loop. Algorithm 1 describes the core of a Red Shift
parser in terms of a OO-style pseudo-code. Given a stream
of tokens, we shift the first one onto the stack, then attempt

to run each of our reducers in turn. A reducer will return
true only if it successfully performed a reduction (entailing
a modification of the stack). If a reducer succeeds, we attempt
another reduction, re-starting from the top of the reducers
list. When no further reductions can be applied, we shift the
next token onto the stack, and repeat the same process. This
continues until the token stream is exhausted.
There is no centralized reducer dispatch: each reducer is

queried in a pre-defined order and given the opportunity to
perform a reduction. To take this decision, reducers have
access to the stack, the token stream, and a global context.

Reducer Aggregation. Attempting every reducer for every
token is a clear-cut case of performance regression compared
to traditional shift-reduce parsers. This can be mitigated by
aggregating multiple reducers together: you can create a
reducer that looks up the top of the stack and the next token,
then calls the appropriate reducer based on a table lookup.

Note that this does not fundamentally change the nature
of Red Shift: aggregation does not introduce backtracking.
Replacing a sequence of reducers that match on the first
token by an aggregated table-lookup reducer is simply a
convenient semantics-preserving optimization.

Specialize using the global context. By default, every re-
ducer can be applied at any position in the token stream.
This is consistent with the idea that parsers should superim-
pose structure rather than check for correctness. This still
leaves some irreducible ambiguity: the same syntax might
mean different things depending on the context. To disam-
biguate, I suggest using a global context object, passed to
every reducer. Reducers can collaborate through this object
by indicating changes in the context (e.g. a special construct
is entered / exited) and modifying their behaviour depending
on the context.

Error detection a posteriori. The pattern does not make
any special provision for error-reporting. Instead, error de-
tection and reporting should be done after the parse com-
pletes (i.e. after all the tokens have been shifted). If the input
was syntactically correct, the result of the parse should be
a single object on the stack. Otherwise, the stack contains
multiple objects (usually tree nodes and tokens). Each of
these objects potentially indicate a missed opportunity for
reduction.

To detect errors, I propose running a series of error-reporters,
once for each item in the stack. These error-reporters are
very similar to reducers: by looking at the stack around the
given stack element, they try to determine a syntactic er-
ror that could have prevented reduction. In some case these
errors are clear-cut, such as a prefix operator appearing in be-
tweeen two otherwise well-formed expressions, or an illegal
item appearing in a list (say a statement in a list of expres-
sions). Other situations are ambiguous, and the reporter may
use an heuristic to guess at the source of the issue.

40

SLE’17, October 23–24, 2017, Vancouver, Canada Nicolas Laurent

Parser extension and composition. A Red Shift parser can
be extended by adding new reducers. Appending to the re-
ducer list is the safest option to introduce new syntax, al-
though we should note it does not guarantee that existing
valid inputs will continue to parse equivalently. Existing
parsers can also be overriden by inserting new parsers ahead
of them. As outlined earlier, reducer aggregation is also an
interesting strategy, especially when disambiguation is re-
quired. Finally, a reducer may take advantage of its ability
to manipulate the stack to second-guess the output of an
earlier reducer.
It is theoretically possible to compose Red Shift parsers,

but the resulting semantics is distinctively not obvious. Lan-
guage embedding, on the other hand, is easier and far more
likely to be useful. It can be accomplish by aggregating the
embedded parser’s reducers, and enabling them only in cer-
tain contexts.

Incremental construction. While writing reducers, you
are likely to push incomplete objects onto the stack. These
objects represent the information contained in part of the
syntax, and are to be completed by a subsequent reduction.
Although reducers are able to shift tokens out of the stream,
using incomplete objects is often an easier way to structure
the code. In the case where the object is never completed, it
becomes straightforward to write an error-reporter to high-
light the error. In the next section, I will describe how I used
incomplete objects to implement operator parsing.

Generic components and combinators. While Red Shift
parsers are ad-hoc, it is possible to write components that can
be shared among parsers, assuming the reducer signature is
identical. For most reducers, the difficulty is that they operate
on parser-specific stack objects. This can be accomodated by
writing two “adapter” reducers: one to translate the input
of the reused reducer, one to translate its output. Writing
generic reducer combinators (reducers that dispatch to other
reducers, as in reducer aggregation) is even easier.

Combine parsing styles. Since a reducer has access to the
stack and the token stream (and has the ability to perform
shift actions), it can use them to parse a portion of the in-
put any way it wants. This is most useful to embed small
lookahead-based parsers into the Red Shift parser. One could
also embed a recursive descent parser, or even another Red
Shift parser that would be cleanly isolated from all outer
reducers. The pattern gives us the flexibility to pick the style
that works best.

3 Discussion
3.1 Prototype
I had the opportunity to test out some of the ideas outlined
in this paper in a small compiler prototype. The compiler
accepts a simple Java-like language.

One of the most pleasant uses of the pattern was deal-
ing with operators. Grammars usually do not have explicit
support for precedence or associativity, and encoding opera-
tor precedence can be a tedious affair, especially for PEGs,
where it is easy to accidentally induce exponential execution
times [4]. Here, I was free to define a table of operators which
specified their type (prefix, suffix, binary), precedence and
associativity, then to write a single reducer that took care
of building up the expression tree. The operator table can
be extended with user-defined operators, which will then be
transparently handled by the reducer.

The operator reducer is triggered when an operator token
has been shifted on the stack. It generates an operator parse
tree node and, if applicable, merges it with the preceding
node, carefully inserting it at the appropriate location given
its precedence and associativity. As a result, operator trees
are always correct with respect to precedence and associa-
tivity. However, it is possible that some operators’ operands
were omitted. It was trivial to build an error-reporter that
verified that no operand was omitted. When we detect an
omitted operand, the real error the user made might not have
been to omit an operand, but to be mistaken about the prece-
dence of some operator. At this point, the error-reporter is
able to show a textual representation of the expression tree
in order to clarify the situation. Another error-reporter was
responsible to look for consecutive expressions, which might
indicate a missing operator.

Otherwise, the parser’s implementation is fairly straight-
forward. Some reducers are responsible to aggregate se-
quenced items (lists of expression parameters, statements,
declarations) and associated error-reporters look for items
that prevent these reductions from happening. Some reduc-
ers use lookahead for disambiguation purpose, for instance
to disambiguate function calls from variable references and
field access.

3.2 Prospects
Beyond the benefits that have already been outlined, I believe
one major prospect of this technique is in enabling partial
analysis of the source code by a compiler’s semantic analysis
step. This is particularly useful in an IDE setting, where we
would like to derive as much information on the source as
possible (most notably types and name resolutions), even
when it contains syntax errors.

From this perspective, the big benefit of the pattern is that
it produces a representation of the source that ismost reduced
given syntactic errors. Additional work might be necessary
to exploit this representation. For instance, the presence of
an odd item in a list of statements might prevent us to see
that these statements form the body of a function. But if we
are able to report these errors, it stands to reason that we
can also build error-removers that eliminate (but not correct)
the errors; so that the information passed to the semantic
analysis step may be more accurate.

41

Red Shift: Procedural Shift-Reduce Parsing SLE’17, October 23–24, 2017, Vancouver, Canada

Acknowledgments
Nicolas Laurent is a research fellow of the Belgian fund for
scientific research (F.R.S.-FNRS).

References
[1] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma,

Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël D. P. Konat, Pedro J. Molina, Martin
Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Ric-
cardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido H.
Wachsmuth, and Jimi van derWoning. 2013. The State of the Art in Lan-
guage Workbenches. Springer International Publishing, Cham, 197–217.
DOI:http://dx.doi.org/10.1007/978-3-319-02654-1_11

[2] Bryan Ford. 2004. Parsing Expression Grammars: A Recognition-based
Syntactic Foundation. SIGPLAN Notices 39, 1 (Jan. 2004), 111–122. DOI:
http://dx.doi.org/10.1145/982962.964011

[3] Graham Hutton. 1992. Higher-order Functions for Parsing. Journal of
Functional Programming 2, 3 (July 1992), 323–343.

[4] Nicolas Laurent and Kim Mens. 2015. Parsing Expression Grammars
Made Practical. In Proceedings of the ACM SIGPLAN International Con-
ference on Software Language Engineering (SLE 2015). ACM, 167–172.
DOI:http://dx.doi.org/10.1145/2814251.2814265

[5] Nicolas Laurent and Kim Mens. 2016. Taming context-sensitive lan-
guages with principled stateful parsing. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering,
Amsterdam, The Netherlands, October 31 - November 1, 2016. 15–27.
http://dl.acm.org/citation.cfm?id=2997370

[6] André Murbach Maidl, Fabio Mascarenhas, Sérgio Medeiros, and
Roberto Ierusalimschy. 2016. Error reporting in Parsing Expression
Grammars. Science of Computer Programming 132 (2016), 129 – 140.
DOI:http://dx.doi.org/10.1016/j.scico.2016.08.004 Selected and ex-
tended papers from SBLP 2013.

[7] Theodore Norvell. 2001. Parsing expressions by recursive descent.
(2001). https://www.engr.mun.ca/~theo/Misc/exp_parsing.htm

42

http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1145/982962.964011
http://dx.doi.org/10.1145/2814251.2814265
http://dl.acm.org/citation.cfm?id=2997370
http://dx.doi.org/10.1016/j.scico.2016.08.004
https://www.engr.mun.ca/~theo/Misc/exp_parsing.htm

	Abstract
	1 Introduction
	1.1 Ad-Hoc Recursive Descent Parsers
	1.2 Inspirations

	2 Description of the Pattern
	3 Discussion
	3.1 Prototype
	3.2 Prospects

	Acknowledgments
	References

